宇宙驿站感谢国家天文台LAMOST项目之“宇宙驿站”提供网络空间和数据库资源! 感谢国家天文台崔辰州博士等人的多方努力和技术支持!

版权科学空间致力于知识分享,所以欢迎您转载本站文章,但转载本站内容必须遵循 署名-非商业用途-保持一致 的创作共用协议。

参与科学空间

为了保证你的利益,推荐你注册为本站会员。同时欢迎通过邮件或留言进行交流、建议或反馈科学空间的问题。
会员注册 会员登录 查看全站文章归档页

17 Apr

Lamost被冠名为“郭守敬望远镜”

2010年4月17日上午,LAMOST望远镜冠名仪式正式举行。LAMOST望远镜被正式冠名为“郭守敬望远镜”。 详细情况大家参见近日刊发的消息。

中科院“郭守敬望远镜”

中科院“郭守敬望远镜”

点击阅读全文...

6 Apr

2010年4月全球天文月(One People,One Sky)

gam2010-logo

gam2010-logo

“同是地球人,共享一片天”(One People, One Sky)

超越2009国际天文年,“2010全球天文月”应运而生。“全球天文月”希望号召全世界各地的人们参与到仰望星空的活动中来,创造更大的共享意识。正如口号说的那样——“同是地球人,共享一片天”(One People, One Sky)。北京天文馆在4月将组织一系列活动,欢迎您的参与。

点击阅读全文...

5 Apr

【生物总结】到细胞内旅游

人类(高加索人种)男性与女性

人类(高加索人种)男性与女性

这篇文章是上学期期末老师要求我们写的生物总结,我不想写得太古板,索性趣味大发了....给大家学习生物做一下参考,有任何意见尽管提出!

每当我们坐在镜子前仔细的端详着自己时,我们会发现自己是多么的普通,而又有众多的独特。使得,即使放眼于自然,我们也是平凡的,但也是“非凡”的。我们还有另外一个名词:生命。

点击阅读全文...

分类:生物自然    标签:细胞, 生物 阅读全文 1 评论
4 Apr

数值方法解方程之终极算法

呵呵,做了一回标题党,可能说得夸张了一点。说是“终极算法”,主要是因为它可以任意提高精度、而且几乎可以应付任何非线性方程(至少理论上是这样),提高精度是已知的迭代式上添加一些项,而不是完全改变迭代式的形式,当然在提高精度的同时,计算量也会随之增大。其理论基础依旧是泰勒级数。

我们考虑方程$x=f(y)$,已知y求x是很容易的,但是已知x求y并不容易。我们考虑把y在$(x_0,y_0)$处展开成x的的泰勒级数。关键是求出y的n阶导数$\frac{d^n y}{dx^n}$。我们记$f^{(n)}(y)=\frac{d^n x}{dy^n}$,并且有
$$\frac{dy}{dx}=\frac{1}{(\frac{dx}{dy})}=f'(y)^{-1}$$

点击阅读全文...

4 Apr

关于自由落体公式的简单修正

自由落体公式-示意图

自由落体公式-示意图

自由落体的一般定义是:只考虑吸引天体和被吸引天体的引力因素,忽略其他的运动和大气摩擦等因素,物体从静止(相对于吸引天体)开始接近吸引天体的运动。根据这个定义,假设地球为一个均匀球体,半径为r,质量为M,物体从距离地表h高度处自由落下。求落到地面的时间t,或者根据时间t求h。

令s为t时刻物体左右下落的物体与地表的距离,忽略物体的小质量,那么可以列出微分方程:
$$\frac{d^2 s}{dt^2}=-\frac{GM}{(r+s)^2}\tag{1}$$并且初始条件是$t=0,s=h,\dot{s}=v=0$

在实际应用中,我们不必求出这道微分方程的精确解,因为这个解极其麻烦,在之前曾经讨论过。我们只需要求出一个有足够精确度的近似解就行。

点击阅读全文...

3 Apr

《方程与宇宙》:抛物线与双曲线轨道(三)

圆锥曲线

圆锥曲线

经过上两回的讨论,我们已经基本摸清了二体问题的运动情况。我们已经找到了二体问题在轨道为椭圆的时候的所有积分,给出了“活力公式”等常用公式的证明,并且留下了一些没有解答的问题。那就是在轨道为抛物线和双曲线时的最后一个积分还没有找出来,现在我们解决这两个问题。其中的关键积分依旧是
$\dot{r}^2={2\mu}/r-{\mu a(1-e^2)}/r^2-\frac{\mu}{a}$——(12)

点击阅读全文...

27 Mar

科学空间:2010年4月重要天象

信使号的水星假色影像(维基百科)

信使号的水星假色影像(维基百科)

进入4月,我们的天象剧场又逐渐热闹起来。9日的水星东大距,是全年水星为数不多的较佳观测时机之一。4月下旬天琴座流星雨也将如约而至,它的到来会使天文爱好者们的春夜观星计划更加丰富多彩。本月,火星、水星、土星,都是星空的主角!

点击阅读全文...

27 Mar

《方程与宇宙》:活力积分和开普勒方程(二)

二体运动

二体运动

上一回的讨论中,我们已经解决了大部分的问题,并且表达了找到r或者$\theta$关于时间t的函数的希望。在最后的内容中,我们做了以下工作:

由(7)得到$\dot{\theta}=h/r^2$,代入(6)得到:
$$\ddot{r} -h^2/r^3=-\frac{\mu}{r^2}\tag{10}$$这是一个二阶微分方程,它的解很容易找出,但是这个积分太复杂:
$$\dot{r}\frac{d\dot{r}}{dr}=h^2/r^3-\frac{\mu}{r^2}$$
$\dot{r}d\dot{r}=(h^2/r^3-\frac{\mu}{r^2})dr$,两端积分
$$\dot{r}^2={2\mu}/r-h^2/r^2+K_1\tag{11}$$$$\Rightarrow {dt}/{dr}=\frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}$$
$t=\int \frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}dr$

点击阅读全文...