Astronomy Calendar of Celestial Events
2012年全年天象
翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html
(北京时间)
一月
01 日 14:15 上弦月
01 日 金星位于: 34° E
03 二 04:19 月球过远地点: 404600 km
04 三 15:23 象限仪座流星雨:ZHR = 120
05 四 11:59 地球过近日点:0.9833 AU
05 四 17:17 月合昴宿星团 3.1° N
06 五 22:30 月亮过升交点
07 六 05:46 月亮过最北点: 22.5° N
09 一 15:30 满月
16 一 15:21 月合角宿一 2° N
16 一 17:08 下弦月
18 三 05:28 月球过近地点: 369900 km
20 五 02:26 月亮过降交点
20 五 10:12 月亮过最南点: 22.5° S
23 一 15:39 新月
31 二 01:42 月球过远地点:404300 km
31 二 12:10 上弦月
[欧拉数学]素数定理及加强
By 苏剑林 | 2011-11-19 | 45033位读者 | 引用1798年法国数学家勒让德提出:
$$\pi(n)\sim\frac{n}{\ln n}$$
这个式子被成为“素数定理”(the Prime Number Theorem, PNT)。它表达的是什么意思呢?其中$\pi(N)$指的是不大于N的素数个数,$\frac{N}{\ln N}$是一个计算结果,符号~叫做“渐近趋于”,整个式子意思就是“不大于N的素数个数渐近趋于$\frac{N}{\ln N}$”;简单来讲,就是说$\frac{N}{\ln N}$是$\pi(N)$的一个近似估计。也许有的读者会问为什么不用≈而用~呢?事实上,~包含的意思还有:
$$\lim_{N-\infty} \frac{\pi(N) \ln N}{N}=1$$
[欧拉数学]素数倒数之和
By 苏剑林 | 2011-11-19 | 39086位读者 | 引用上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门!
接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理:
无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!
[欧拉数学]黎曼ζ函数
By 苏剑林 | 2011-11-18 | 51779位读者 | 引用欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!
黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。
[欧拉数学]凸多面体的面、顶、棱公式
By 苏剑林 | 2011-11-17 | 45745位读者 | 引用作为数学史上最高产的数学家(似乎没有之一),欧拉的研究几乎涉及了所有数学领域,包括数论、图论、微积分等,同时他还是一个物理学家,他与拉格朗日首创的变分法使得经典力学的研究达到了一个新的高度。欧拉具有惊人的计算能力和数学直觉,这对他的数学研究帮助极大。现在在很多领域,我们都可以看到不少以欧拉命名的公式、定理。欧拉在数学上极为高产,而且得出了相当多的正确结论,但其中有相当多的结论只是来源于他的数学直觉(创造性思维)以及类比推理,这并非欧拉不追求严谨,而是由于当时数学知识的局限性,难以严密化。还有,研究的顺序是:先得出答案,然后才论证答案!
再者,创造性思维往往令人叫绝,能更加促进我们的思维能力。过多地考虑严格性和技术细节,通常都妨碍了我们得出正确的答案。正如《解题的艺术》中说道:粗略而有灵感的思想可能会引出严格证明;而有时,严格的证明会完全淡化论证的精髓。因此,我们不必在意欧拉证明的不严谨,反而,它是一次完美的视觉与思维享受。正因如此,一些绝妙、非严密、(在某种程度上)不正确的但同时得出了正确结果的数学论证,就被称为“欧拉数学”。事实上,任何人、任何研究都必须经过“欧拉数学”这一不严密的早期阶段。
------------华丽的分割线----------------
下面是一条关于凸多面体的面、顶、棱公式,它属于拓扑学的内容,我们称之为“欧拉公式”。(当然,公式是欧拉的,论证过程只是笔者粗糙地给出的)。
[遐想]细胞的进化是一次次“大吞并”?
By 苏剑林 | 2011-11-06 | 43616位读者 | 引用传说中的高三备考是一次全面系统的大复习,但对于我们而言,它并不是复习,而是学习。我发现很多知识点在以前都是鲜有接触的,这无疑说明了两个问题:当时我学习得很肤浅;我的遗忘力太强了。就拿生物来说吧,以前总是很简单地就跳阅过去了,从不会去思考一些深入的问题。现在的重新“复习”阶段,却饶有兴趣地引出了很多的思考。特别是有关细胞进化的讨论,显得特别有趣。
根据古生物的研究,地球上第一个生命起源于32亿年前,是一个很简单的原核细胞,其遗传物质是RNA,后来逐渐演变成以DNA为遗传物质,例如细菌有一个环状的DNA分子。原核生物很快就进化出了真核生物,因为迄今所知最古老的真核生物化石已有近21亿年的历史,许多科学家推测,最早的真核生物可能早在30亿年前就出现了。
这里便引申出了一个问题:病毒是什么时候出现的?它是怎么出现的?
2012年全年天象大观
By 苏剑林 | 2011-10-23 | 35596位读者 | 引用Astronomy Calendar of Celestial Events
2012年全年天象
翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html
(北京时间)
最近评论