实数集到无理数集的双射
By 苏剑林 | 2014-09-22 | 35878位读者 | 引用集合论的结果告诉我们,全体实数的集合$\mathbb{R}$跟全体无理数的集合$\mathbb{R} \backslash \mathbb{Q}$是等势的,那么,如何构造出它们俩之间的一个双射出来呢?这是一个颇考读者想象力的问题。当然,如果把答案给出来,又似乎显得没有那么神秘。下面给出笔者构造的一个例子,读者可以从中看到这种映射是怎么构造的。
为了构造这样的双射,一个很自然的想法是,让全体有理数和部分无理数在它们自身内相互映射,剩下的无理数则恒等映射。构造这样的一个双射首先得找出一个函数,它的值只会是无理数。要找到这样的函数并不难,比如我们知道:
1、方程$x^4 + 1 = y^2$没有除$x=0,y=\pm 1$外的有理点,否则将与费马大定理$n=4$时的结果矛盾。
2、无理数的平方根依然是无理数。
根据这些信息,足以构造一个正实数$\mathbb{R}^+$到正无理数$\mathbb{R}^+ \backslash \mathbb{Q}^+$的双射,然后稍微修改一下,就可以得到$\mathbb{R}$到$\mathbb{R} \backslash \mathbb{Q}$的双射。
Cantor-Bernstein 定理(给出双射!)
By 苏剑林 | 2014-09-19 | 47915位读者 | 引用生成函数法与整数的分拆
By 苏剑林 | 2014-09-16 | 30900位读者 | 引用我们在高中甚至初中,都有可能遇到这样的题目:
设$x,y,z$是非负整数,问$x+y+z=2014$有多少组不同的解?(不同顺序视为不同的解)
难度稍高点,可以改为
设$x,y,z$是非负整数,$0\leq x\leq y\leq z$,问$x+y+z=2014$有多少组不同的解?
这些问题都属于整数的分拆问题(广为流传的哥德巴赫猜想也是一个整数分拆问题)。有很多不同的思路可以求解这两道题,然而,个人认为这些方法中最引人入胜的(可能也是最有力的)首推“生成函数法”。
关于生成函数,本节就不多作介绍了,如果缺乏相关基础的朋友,请先阅读相关资料了解该方法。不少数论的、离散数学的、计算机科学的书籍中,都介绍了生成函数法(也叫母函数法)。本质上讲,母函数法能有诸多应用,是因为$x^a\times x^b=x^{a+b}$这一性质的成立。
从费马大定理谈起(九):n=3
By 苏剑林 | 2014-09-01 | 28552位读者 | 引用现在可以开始$n=3$的证明了。在实整数范围内n=3的证明看起来相当复杂,而且跟n=4的证明似乎没有相通之处。然而,如果我们在$\mathbb{Z}[\omega]$中考虑$x^3+y^3+z^3=0$无解的证明,就会跟n=4时有很多类似的地方,而且事实上证明比n=4时简单(要注意在实整数范围内的证明,n=4比n=3简单。费马完成了n=4的证明,但是没完成n=3的证明。)。我想,正是这样的类似之处,才让当初还没有完成证明的数学家拉梅就自信他从这条路可以完成费马大定理的证明。(不过,这自信却是失败的案例:拉梅的路不能完全走通,而沿着这条路走得更远的当属库默,但即便这样,库默也没有证明费马大定理。)
证明跟$n=4$的第二个证明是类似的。我们先往方程中添加一个单位数,然后证明无论单位数是什么,方程在$\mathbb{Z}[\omega]$中都无解。这是一个很妙的技巧,让我们证明了更多的方程无解,但是却用到了更少的步骤。事实上,存在着只证明$x^3+y^3+z^3=0$无解的证明,但需要非常仔细地分析里边的单位数情况,这是相当麻烦的。本证明是我参考了Fermats last theorem blogspot上的证明,然后结合本系列n=4的第二个证明,简化而来,主要是减少了对单位数的仔细分析。
从费马大定理谈起(八):艾森斯坦整数
By 苏剑林 | 2014-08-30 | 40983位读者 | 引用是时候向n=3进军了,为了证明这个情况,我们需要一个新的数环:艾森斯坦整数(Eisenstein Integer)。艾森斯坦是德国著名数学家,同时代的高斯曾经评价:“只有三个划时代的数学家:阿基米德,牛顿和艾森斯坦。”足见艾森斯坦的成就斐然。事实上,阅读费马大定理的研究史,同时也是在阅读数学名人录——没有超高的数学,几乎不可能在费马大定理中有所建树。
基本定义
跟高斯整数一样,艾森斯坦整数也是复整数的一种,其中,高斯整数是以1和$i$为基,$i$其实是一个四次单位根,也就是$x^4-1=0$的一个非实数根,因此高斯整数也叫做四次分圆整数;而艾森斯坦整数以1和$\omega$为基,$\omega$是三次单位根,也就是$x^3-1=0$的一个非实数根。任意一个艾森斯坦整数都可以记为$a+b\omega,\,a,b\in\mathbb{Z}$,艾森斯坦整数环记为$\mathbb{Z}[\omega]$,也称为三次分圆整数环。
从费马大定理谈起(七):费马平方和定理
By 苏剑林 | 2014-08-23 | 29817位读者 | 引用本想着开始准备n=3的证明,但这需要引入Eisenstein整数的概念,而我们已经引入了高斯整数,高斯整数的美妙还没有很好地展示给读者。从n=4的两个证明可以知道,引入高斯整数的作用,是把诸如$z^n-y^n$的式子进行完全分解。然而,这一点并没有给我们展示多少高斯整数的神奇。读者或许已经知道,复分析中很多简单的结果,如果单纯用实数描述出来,便会给人巧夺天工的感觉,在涉及到高斯整数的数论中也是一样。本文就让我们来思考费马平方和定理,以此再领会在高斯整数中处理某些数论问题时的便捷。——我们从费马大定理谈起,但又并不仅仅只谈费马大定理。
费马平方和定理:奇素数$p$可以表示为两个整数的平方和,当且仅当该素数具有$4k+1$的形式,而且不考虑相加顺序的情况下,表示法是唯一的。
从费马大定理谈起(六):n=4(2)
By 苏剑林 | 2014-08-19 | 26111位读者 | 引用在上一篇文章中,笔者提到似乎证明n=4时必须要证明$x^4+y^4=z^2$无解而不能只证明$x^4+y^4=z^4$无解。不过,在今天中午研究的时候,笔者发现了另外一个n=4的证明,它同样是在$\mathbb{Z}[i]$中,但是,证明的则是指数全是4的形式,但是,又不单单是$x^4+y^4=z^4$的形式,而是$\varepsilon x^4+y^4=z^4$,$\varepsilon$是单位数。这个证明过程,我觉得应该更接近n等于其他奇素数时的证明,遂补充了这篇文章,供大家参考。读者可以对比着上一篇文章进行比较阅读。
引理
用$\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon$表示$\mathbb{Z}[i]$中的单位数,下面先证明
如果方程$\varepsilon_1 x'^4 +\varepsilon_2 y'^4+\varepsilon_3 z'^4=0$在$\mathbb{Z}[i]$中有全不为0的解,那么在经过适当的化简和整理之后,方程必有形式$\varepsilon x^4+y^4=z^4$,其中$(x,y,z)$是$(x',y',z')$的某个置换,$\xi^2|x$。
最近评论