一本对称闯物理:相对论力学(一)
By 苏剑林 | 2014-03-19 | 30386位读者 | 引用简单说说
笔者最近陶醉于从李对称的角度来理解力学和场论,并且计算得到一些比较有趣的结果,遂想在此与大家分享。我发现,仅仅需要一个描述对称的无穷小生成元和一些最基本的假设,几乎就可以完成地推导出整个相对论力学来,甚至推导出整个(经典)场论理论来。这确实是不可思议的,我现在能基本体会到当年徐一鸿大师写的《可畏的对称》的含义了。对称的威力如此之大,以至于我们真的不得不敬畏它。而在构思本文题目的时候,我也曾想到过用“可畏的对称”为题,但不免有抄袭和老套之嫌。后来想到曾有一部漫画叫《一本漫画闯天涯》,遂将“漫画”改成“对称”,“天涯”改成“物理”,似乎也能表达我对“对称”的感觉。
对称就是在某种变换下保持不变的性质,比如狭义相对论要求所有物理定律在所有惯性系中保持不变,这相对于要求描述物理定律的方程在匀速运动的坐标变换下保持不变,结合光速不变的要求,我们就可以推导出洛伦兹变换,从而完成地描述了狭义相对论里边的对称。然而,并不是任何时候都可以想推导洛伦兹变换那样,能够把一个完整的变换推导出来的。幸好,李对称的不需要完整的对称描述,它只需要“无穷小变换”(意味着我们可以忽略掉高阶项),对应地产生一个“无穷小生成元”,用这个无穷小生成元,就足以完整构建出我们所需要的物理来。这种“无穷小”决定“广泛”、“局部”决定“全局”的奇妙至今仍让我觉得不可思议。(关于李对称、无穷小生成元的基本概念,不妨先阅读:《求解微分方程的李对称方法》)
Mathieu方程
在文章《有质动力:倒立单摆的稳定性》中,我们分析了通过高频低幅振荡来使得倒立单摆稳定的可能性,并且得出了运动方程
$$l\ddot{\theta}+[h_0 \omega^2 \cos(\omega t)-g]\sin\theta=0$$
由此对单摆频率的下限提出了要求$\omega \gg \sqrt{\frac{g}{h_0}}$。然而,那个下限只不过是必要的,却不是充分的。如果要完整地分析该单摆的运动方程,最理想的方法当然是写出上述常微分方程的解析解。不过很遗憾,我们并没有办法做到这一点。我们只能够采取各种近似方法来求解。近似方法一般指数值计算方法,然后笔者偏爱的是解析方法,也就是说,即使是近似解,也希望能够求出近似的解析解。
不求珍馐百味,但愿开水白菜
By 苏剑林 | 2014-03-15 | 39954位读者 | 引用一维弹簧的运动(下)
By 苏剑林 | 2014-03-13 | 26480位读者 | 引用在上一篇文章中,我们得到了一维弹簧运动的方程
$$m\frac{\partial^2 X}{\partial t^2}=k\frac{\partial^2 X}{\partial \xi^2}$$
并且得到了通解
$$X=F(u)+H(v)=F(\xi+\beta t)+H(\xi-\beta t)$$
或者
$$X(\xi,t)=\frac{1}{2}\left[X_0(\xi+\beta t)+X_0(\xi-\beta t)\right]+\frac{1}{2\beta}\int_{\xi-\beta t}^{\xi+\beta t} X_1 (s)ds$$
在文章的末尾,提到过这个解是有些问题的。现在让我们来详细分析它。
一维弹簧的运动(上)
By 苏剑林 | 2014-03-11 | 28214位读者 | 引用平面曲线的曲率的复数表示
By 苏剑林 | 2014-03-04 | 29152位读者 | 引用开学已经是第二周了,我的《微分几何》也上课两周了,进度比较慢,现在才讲到平面曲线的曲率。在平面曲线$\boldsymbol{t}(t)=(x(t),y(t))$某点上可以找出单位切向量。
$$\boldsymbol{t}=\left(\frac{dx}{ds},\frac{dy}{ds}\right)$$
其中$ds^2 =dx^2+dy^2$,将这个向量逆时针旋转90度之后,就可以定义相应的单位法向量$\boldsymbol{n}$,即$\boldsymbol{t}\cdot\boldsymbol{n}=0$。
常规写法
让我们用弧长$s$作为参数来描述曲线方程,$\boldsymbol{t}(s)=(x(s),y(s))$,函数上的一点表示对$s$求导。那么我们来考虑$\dot{\boldsymbol{t}}$,由于$\boldsymbol{t}^2=1$,对s求导得到
$$\boldsymbol{t}\cdot\dot{\boldsymbol{t}}=0$$
在讨论曲线坐标系的积分时,通常都会出现行列式这个东西,作为“体积元”的因子。在广义相对论中,爱因斯坦场方程的作用量就带有度规的行列式,而在对其进行变分时,自然也就涉及到了行列式的求导问题。我参考了朗道的《场论》以及《数理物理基础--物理需用线性高等数学导引》,了解到相关结果,遂记录如下。
推导
设
\begin{equation}\boldsymbol{A}(t)=\left(a_{ij}(t)\right)_{n\times n}\end{equation}
是一个n阶矩阵,其中每个矩阵元素都是t的函数。其行列式为$|\boldsymbol{A}|$,自然地,考虑
\begin{equation}\frac{d}{dt}|\boldsymbol{A}|\end{equation}
翻到新的维度,把积分解决!
By 苏剑林 | 2014-02-25 | 37134位读者 | 引用一般来说,如果原函数容易找到的话,牛顿-莱布尼兹公式是定积分的通用方法。但是牛顿-莱布尼兹公式只适合连续函数的积分,如果积分区间含有奇点,那就不成立了。比如,我们考虑积分
$$\int_{-1}^1 \frac{1}{x^2}dx$$
当然,从严格的数学上来说,这种写法是不成立的,因为被积函数在原点没有意义。当然,从物理的角度来考虑,由于对称性,我们确信
$$\int_{-1}^1 \frac{1}{x^2}dx=2\int_{0}^1 \frac{1}{x^2}dx=\lim_{\varepsilon\to 0}2\int_{\varepsilon}^1 \frac{1}{x^2}dx$$
从而得出积分发散的结论。这种处理某种程度上是可以接受的,但是却不是让人满意的,因为它导致了分段。有什么办法可以直接处理这种情况呢?确实有的,同样引入参数,并且最终让参数为0,考虑带参数的积分
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx$$
只要参数为正,这个被积函数就在$\mathbb{R}$上处处连续了,也就是奇点消失了,这样子就可以用牛顿-莱布尼兹公式了
$$\int_{-1}^1 \frac{1}{x^2+\varepsilon^2}dx=\left.\frac{1}{\varepsilon}\arctan\left(\frac{x}{\varepsilon}\right)\right|_{-1}^{1}$$
考虑$\varepsilon\to 0$的情况,就自动得到了积分发散的结论。
最近评论