素数之美1:所有素数之积
By 苏剑林 | 2014-07-30 | 32561位读者 | 引用在之前的欧拉数学中,我们计算过所有素数的倒数之和,得出素数的倒数之和是发散的,从而这也是一个关于素数个数为无穷的证明。在本篇文章中,我们尝试计算所有素数之积,通过一个简单的技巧,得到素数之积的一个上限(以后我们也会计算下限),从而也得到$\pi(n)$的一个上限公式。更重要的,该估计是初等地证明Bertrand假设(说的是n与2n之间定有一个素数)的重要基础之一。本文内容部分参考自《数学天书中的证明》和《解析和概率数论导引》。
素数之积
笔者已经说过,数论的神奇之处就是它总是出人意料地把数学的不同领域联系了起来。读者很快就可以看到,本文的证明和组合数学有重要联系(但仅仅是简单的联系)。关于素数之积,我们有以下结论:
不超过$n$的所有素数之积小于$4^{n-1}$。
初试在Python中使用PARI/GP
By 苏剑林 | 2014-07-22 | 30231位读者 | 引用强大的整数数列网站OEIS
By 苏剑林 | 2014-07-17 | 37808位读者 | 引用OEIS?:http://oeis.org/
近段时间在研究解析数论,进一步感觉数论真是个奇妙的东西,通过它,似乎数学的各个方面——离散的和连续的,实数的和复数的,甚至物理的——都联系了起来。由此也不难体会到当初高斯(Gauss)会说“数学是科学的皇后,数论是数学的皇后。”了。今天,由于在研究素数的个数的上下界问题时,需要思考组合数
$$C_{n}^{2n}=\binom{2n}{n}=\frac{(2n)!}{n!\ n!}$$
最多能被2的多少次方整除。直觉告诉我,次数应该是随着$n$的增大而增大的,但事实却不是,比如$C_{15}^{30}$能够被16整除,但是$C_{20}^{40}$却最多只能被4整除,有种毫无规律的感觉,于是到群里问问各大神。其中,wayne提出
这个可以写个小程序算出一些数据,再在oeis上搜搜
《新理解矩阵6》:为什么只有方阵有行列式?
By 苏剑林 | 2014-07-15 | 67933位读者 | 引用学过线性代数的朋友都知道,方阵和非方阵的一个明显不同是,对于方阵我们可以计算它的行列式,如果不是方阵的话,就没有行列式这个概念了。在追求统一和谐的数学系统中,为什么非方阵却没有行列式?也许对于这个问题最恰当的回答是——因为不够美。对于非方阵,其实也可以类似地定义它的行列式,定义出来的东西,跟方阵的行列式具有同样的性质,比如某行乘上一个常数,行列式值也就乘以一个常数,等等;而且还可以把其几何意义保留下来。但是,非方阵的行列式是不够美的,因为对于一个一般的整数元素的方阵,我们的行列式是一个整数;而对于一个一般的整数元素的非方阵,却导致了一个无理数的行列式值。另外,一个也比较重要的原因是,单单是方阵的行列式也够用了。综合以上两个理由,非方阵的行列式就被舍弃不用了。
非方阵的行列式不够漂亮
$n$阶方阵的行列式是每个向量的线性函数,它代表着向量之间的线性相关性;从几何上来讲,它就是向量组成的平行n维体的(有向)体积。我们当然期望非方阵的行列式也保留这些性质,因为只有这样,方阵行列式的那些运算性质才得以保留,比如上面说的,行列式的一行乘上一个常数,行列式值也乘上一个常数。我们考虑$m\times n$的矩阵,其中$ m < n $,我们将它看成是$m$个$n$维向量的组合。最简单的,我们先考虑$1\times 2$矩阵的行列式,也就是二维向量$(a,b)$的行列式。
齐次多项式不等式的机器证明(差分代换)
By 苏剑林 | 2014-07-06 | 39340位读者 | 引用在高中阶段,笔者也像很多学生一样参加过数学竞赛,而在准备数学竞赛的过程中,也做过一些竞赛题,其中当然少不了不等式题目。当时,面对各种各样的不等式证明题,我总是非常茫然,因为看到答案之后,总感觉证明的构造非常神奇,但是每当我自己独立去做时,却总想不出来。于是后来就萌生了“有没有办法可以通用地证明这些不等式?”的想法。为了实现这个目的,当时就想出了本文的技巧——通过牺牲计算的简便性来换取证明的有效性。后来,我虽然没有走上数学竞赛这条路,但这个方法还是保留了下来,近日,在和数学研发论坛的朋友们讨论不等式问题时,重新拾起了这个技巧。
此前,在本博客的文章《对称多项式不等式的“物理证明”》中,已经谈到了这个技巧,只是限制于当时的知识储备,了解并不深入。而在本文中,则进行拓展了。这个技巧在当时是我自己在证明中独立发现的,而现在在网上查找时发现,前辈们(杨路、姚勇、杨学枝等)早已研究过这个技巧,称之为“差分代换”,并且已经探究过它在机器证明中的作用。该技巧可以很一般化地用于齐次/非其次不等式的证明,限于篇幅,本文只谈齐次多项式不等式,特别地,是对称齐次多项式不等式,并且发现某些可以简化之处。
[追溯]封装界传奇人物
By 苏剑林 | 2014-07-02 | 18982位读者 | 引用转载理由:现在的deepin和ylmf(已经改为StartOs)都已经在制作自己的Linux,而当初它们都是制作GhostXp的大家。我的初中,即2009年以前,是GhostXP流行的时代,而我当时也加入了这一行列中,发表过一些GhostXP的作品。后来随着时代的发展,XP也就慢慢退出了舞台。我也就随之退出了这个舞台,也因此得以专注科学。但是,几乎所有我的电脑知识,都积累于那个时期,因为为了完成一个系统的制作和推广,需要懂得的电脑技术很多很多,我也得到了充分的锻炼。下面列举的一些人,都是当年GhostXP界的神话人物,有些我并不认识,但其名在当时就如雷贯耳;有些人在当时还十分幸运地加上了他们的QQ。这篇文章实际上已经是很久已经的了,但还是值得回味过去的时间,以此为我的初中时代留下一些回忆。
勾股数的通解及其推广
By 苏剑林 | 2014-07-01 | 21203位读者 | 引用在之前的文章《几何的数与数的几何:超复数的浅探究》中,我们谈及过四元数。四元数源于把复数的$|(a+bi)(c+di)|=|a+bi|\times|c+di|$这一独特的性质进行高维推广。为什么偏爱这一性质?读者或许已经初步知道一些用到复数的这一性质的例子,有几何方面的,也有物理方面的,这一性质为处理模长相关问题带来了美妙的方便。本文介绍它在求三元二次齐次不定方程的整数通解中的应用,这一例子同样展示了复数这一性质的神奇,让我们不得不认同当初哈密顿为了将其推广到高维而不惜耗费十年光阴的努力。
勾股数问题
读者或许已经知道,勾股数,也就是满足
$$x^2+y^2=z^2$$
的所有自然数解,由下面公式给出
$$x=a^2-b^2,\quad y=2ab,\quad z=a^2+b^2$$
最近评论