Processing math: 100%
30 Oct

11月03日美国“发现号”航天飞机“绝唱”

美“发现”号航天飞机将于11月踏上绝唱之旅

美“发现”号航天飞机将于11月踏上绝唱之旅

美国航天局29日说,由于“发现”号航天飞机右侧轨道操控系统的加压部分发现两处氦气泄漏,其发射日期将被推迟一天。

“发现”号原计划美国东部时间11月1日发射升空。根据美国航天局最新安排,其发射将推迟到11月2日16时17分(北京时间3日4时17分)。这将是“发现”号计划中的绝唱之旅,也是美国航天飞机今年最后一次飞行任务。

点击阅读全文...

30 Oct

太阳帆技术的粗浅分析(补充)

上星期,BoJone凭借简陋的物理知识,发表了《太阳帆技术的粗浅分析》一文,并转到了牧夫天文论坛上,希冀能够抛砖引玉。很幸运得到了牧夫上的高手的指正。他们指出了我的文章中a=arayaG>0这一条件过于苛刻。因为,除了太阳光压外,还有另外一种力量能够战胜太阳引力——惯性离心力

重新把上篇文章的一个结果列出来:
a=arayaG=(L2πc(ρh+m/S)GMsun)1r2

点击阅读全文...

24 Oct

太阳帆技术的粗浅分析

IKAROS-帆面示意图

IKAROS-帆面示意图

如果说建造天梯对于我们来说遥不可及的话,那么利用太阳帆技术进行太空航行可以说是“近在眉睫”了。通过《天文爱好者》上面的文章,我们能够对太阳帆的技术以及发展有了相当的了解。但是,这仅仅知道了“What(是什么)”和“How(怎么样)”,却还不知道“Why(为什么)”。现在尝试利用我们已经接触过的物理和天文知识,来对太阳帆技术进行一个浅层面的分析。

点击阅读全文...

24 Oct

扬帆——在宇宙的海洋中航行

以下内容来源于《天文爱好者》杂志2010年10期(作者庞统,责任编辑李良)。
作为消息通告和交流学习所用,请勿用于商业或其他非法用途
ikaros图片版权:ISAS / JAXA;其余来自互联网搜索得到。

2010年5月21曰,日本用H-2A火箭成功发射了耗资15亿曰元(合1600万美元)的“伊卡洛斯”太阳帆,以检验它是否能够利用太阳能实现加速飞行,从而拉开了研制和发射太阳帆式新型推进航天器高潮的序幕。2010年9月和年底,美国还将先后发射纳帆-D2和光帆-1太阳帆。

ikaros

ikaros

点击阅读全文...

23 Oct

科学空间:2010年11月重要天象

2009leo-songjian

2009leo-songjian

十一月夜空的主角,将是几个颇具看点的流星雨,南、北金牛以及狮子座流星雨的极大非常值得期待。当然,这段时间观测条件最好的行星还是木星,而到了月底,水星和金星的观测条件也将逐渐转好。其中水星是昏星,日落后在西方的低空中隐约可见,而金星作为晨星将在日出前出现在东方天空中,亮度可达-4.6等。

点击阅读全文...

22 Oct

未来的天地枢纽——太空天梯

开发太空天梯

开发太空天梯

漫话
BoJone认为,科学的意义并非在于无休止地计算,而是利用有限的科学理论来解释尽可能多的自然、生活现象。正因如此,科学家们追求和谐、简洁、优美的科学理论。科学就是想方设法地把未知变成已知,并在此基础上进一步发展。

随着媒体技术的发展,我们接触信息的渠道越来越多。每每我们从互联网或报纸上看到一则科学新闻时,我们几乎都会为之兴奋。但是,外行看热闹,内行看门道。对于真正热爱科学的朋友来说,也许会更加感兴趣新闻内容的来由。也就是说,我们希望进一步了解结论是怎样得出来的——哪怕只是在很浅的层面上认识。

点击阅读全文...

16 Oct

球壳内部的均匀力场

也许不少同好已经在一些书籍上看到过这样的论述:

各向同性的薄球壳,其内部任意一点所受到来自球壳的引力为0。

这是一个很神奇的事情,因为这意味着这是一个均匀引力场,虽然我们在很多问题上都假设了引力场均匀,但是我们却很难知道如何构造一个真正的均匀引力场(而构造一个真正的均匀力场都分析某些问题是很有用的,例如推导一些比例系数),现在眼前就摆着一个均匀引力场了。并且利用它我们就可以计算均匀实心球内部一点所受到的引力(等于它与一个球体的引力)。而关于它的证明,当然也可以利用微积分的知识,可是我们在这里介绍一个初等的方法,相信它会使我们更加感受到物理的神奇和有趣。

点击阅读全文...

16 Oct

以自然数幂为系数的幂级数

i=0aixi=a0+a1x+a2x2+a3x3+...
最近为了数学竞赛,我研究了有关数列和排列组合的相关问题。由于我讨厌为某个问题而设计专门的技巧,所以我偏爱通用的方法,哪怕过程相对麻烦。因此,我对数学归纳法(递推法)和生成函数法情有独钟。前者只需要列出问题的递归关系,而不用具体分析,最终把问题转移到解函数方程上来。后者则巧妙地把数列an与幂级数i=0aixi一一对应,巧妙地通过代数运算或微积分运算等得到结果。这里我们不用考虑该级数的敛散性,只需要知道它对应着哪一个“母函数”(母函数展开泰勒级数后得到了级数i=0aixi)。显然,这两种方法的最终,都是把问题归结为代数问题。

点击阅读全文...