采样定理:有限个点构建出整个函数
By 苏剑林 | 2015-04-16 | 34072位读者 | 引用假设我们在听一首歌,那么听完这首歌之后,我们实际上在做这样的一个过程:耳朵接受了一段时间内的声波刺激,从而引起了大脑活动的变化。而这首歌,也就是这段时间内的声波,可以用时间t的函数f(t)描述,这个函数的区间是有限的,比如t∈[0,T]。接着假设另外一个场景——我们要用电脑录下我们唱的歌。这又是怎样一个过程呢?要注意电脑的信号是离散化的,而声波是连续的,因此,电脑要把歌曲记录下来,只能对信号进行采样记录。原则上来说,采集的点越多,就能够越逼真地还原我们的歌声。可是有一个问题,采集多少点才足够呢?在信息论中,一个著名的“采样定理”(又称香农采样定理,奈奎斯特采样定理)告诉我们:只需要采集有限个样本点,就能够完整地还原我们的输入信号来!
采集有限个点就能够还原一个连续的函数?这是怎么做到的?下面我们来解释这个定理。
任意给定一个函数,一般来说我们都可以将它做傅里叶变换:
F(ω)=∫+∞−∞f(t)eiωtdt
虽然我们的积分限写了正负无穷,但是由于f(t)是有限区间内的函数,所以上述积分区间实际上是有限的。
伽马函数的傅里叶变换之路
By 苏剑林 | 2014-12-08 | 77991位读者 | 引用伽马函数
Γ(x)=∫+∞0tx−1e−tdt
作为阶乘的推广,会让很多初学者感到困惑,对于笔者来说也不例外。一个最自然的问题就是:这般复杂的推广公式是如何得到的?
在cos.name的文章《神奇的伽马函数》中,有比较详细地对伽马函数的历史介绍,笔者细读之后也获益匪浅。但美中不足的是,笔者还是没能从中找到引出伽马函数的一种“自然”的办法。所谓“自然”,并不是说最简单的,而是根据一些基本的性质和定义,直接把伽马函数的表达式反解出来。它的过程和运算也许并不简单,但是思想应当是直接而简洁的。当然,我们不能苛求历史上伽马函数以这种方式诞生,但是作为事后探索是有益的,有助于我们了解伽马函数的特性。于是笔者尝试了以下途径,得到了一些结果,可是也得到了一些困惑。
最近评论