Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
7 Mar

用傅里叶级数拟合一维概率密度函数

《“闭门造车”之多模态思路浅谈(一):无损输入》中我们曾提到,图像生成的本质困难是没有一个连续型概率密度的万能拟合器。当然,也不能说完全没有,比如高斯混合模型(GMM)理论上就是可以拟合任意概率密度,就连GAN本质上也可以理解为混合了无限个高斯模型的GMM。然而,GMM尽管理论上的能力是足够的,但它的最大似然估计会很困难,尤其是通常不适用基于梯度的优化器,这限制了它的使用场景。

近日,Google的一篇新论文《Fourier Basis Density Model》针对一维情形,提出了一个新的解决方案——用傅里叶级数来拟合。论文的分析过程颇为有趣,构造形式也很是巧妙,值得学习一番。

问题简述

可能有读者质疑:只研究一维情形有什么价值?确实,如果只考虑图像生成场景,那可能真的价值有限,但一维概率密度估计本身有它的应用价值,如数据的有损压缩,所以它依然是一个值得研究的主题。再者,即便我们需要研究多维的概率密度,也可以通过自回归的方式转化为多个一维的条件概率密度来估计。最后,这个分析和构造过程本身就很值得回味,所以哪怕是仅仅作为一道数学分析题来练习也是相当有益的。

点击阅读全文...

11 Jan

狄拉克函数:级数逼近

魏尔斯特拉斯定理

将狄拉克函数理解为函数的极限,可以衍生出很丰富的内容,而且这些内容离严格的证明并不遥远。比如,定义
δn(x)={(1x2)nIn,x[1,1]0,其它情形
其中In=11(1x2)ndx,于是不难证明
δ(x)=lim
这样,对于[a,b]上的连续函数f(x),我们就得到
f(x)=\int_{-1}^1 f(y)\delta(x-y)dy = \lim_{n\to\infty}\int_{-1}^1 f(y)\delta_n(x-y) dy
这里-1 < a < b < 1,并且我们已经“不严谨”地交换了积分号和极限号,但这不是特别重要。重要的是它的结果:可以看到
P_n(x)=\int_{-1}^1 f(y)\delta_n(x-y) dy
x的一个2n次多项式,因此上式表明f(x)是一个2n次的多项式的极限!这就引出了著名的“魏尔斯特拉斯定理”:

闭区间上的连续函数都可以用多项式一致地逼近。

点击阅读全文...