轻微的扰动——摄动法简介(1)
By 苏剑林 | 2013-01-16 | 48178位读者 | 引用为了计算实际问题,我们总会采用各种各样的理想模型。一般而言,一个模型越接近实际现象,它往往会越复杂。而忽略掉多数微小的干扰,只保留一些主要的项,这通常可以得到一个相当简单、能够精确解出的模型。以这样的一个可以精确解出的近似模型为基础,逐渐地把微小项的影响添加进去,使得我们的答案越来越准确,这就是摄动法的思想,也称作“微扰理论”。这种方法源于求解天体力学的N体问题,而现在已经发展成为一门相当系统的学科,并应用到了相对多的领域,如量子力学、电子理论等。
其实不难发现,实际问题中存在不少这样的例子,即当我们要计算某个现象时,先考虑最突出的,然后再考虑细节。比如说,要计算地球的轨道,先把它看成一个与太阳组成的纯粹的二体系统,然后把各种微小效应加进去,比如月球的影响、各大行星的影响甚至由于地球的不规则形状所产生的影响等。当然,不仅仅是这一类复杂的“大问题”,我们平常可能会遇到的一些“小问题”有可能也让摄动法派上用场。本文试图将摄动法介绍给各位读者。
摄动法的主要步骤是先忽略微小影响(令小参数为0),求出精确解;然后把所要求的解表达为关于小参数的幂级数。这个方法可以用于解答代数方程、微分方程等等各种领域。下面先以一个简单的代数方程来说明:
一、求解方程:$\varepsilon x^3+x^2=p^2$
行星密度与其公转周期(更新)
By 苏剑林 | 2012-10-24 | 24709位读者 | 引用===我与《天文爱好者》不得不说的故事===
去年在订阅2012年的《天文爱好者》时,考虑到之后就要上大学了,所以只是订了半年,因此过了今年六月我就没有看新的《天文爱好者》了。暑假的两个月,还有九月、十月,将近四个月没有看它了,我本以为我已经适应了没有天爱的日子。
大概一个星期前,我在天爱的淘宝网重新买了最近四个月的《天文爱好者》,18日下午,我再见了它。那天晚上,我突然觉得很感动,有种感慨万千的感觉。虽然这么久没有看了,但是再看的感觉是如此的熟悉,如此的温馨。我原来觉得天文只是我的一个业余兴趣,如同生物化学那样,但在那瞬间我明白了我真的爱着天文,而且时间和空间的距离并不能减少我的爱!在那时,我决定了,我一定要从事天文相关专业——虽然我只是一个数学系学生!
==========行星周期下限==========
(2012.10.25:zwhzjh提出攝动力公式有错误,修正了攝动力的计算公式,之前写少了一个因子2,还有在最后的实际检验时,为了追求结果的合理性,忽略了方法的科学性,现在已经进行了修正,欢迎各位提更多意见。)
本文要探讨的东西是我在阅读《天文爱好者》的时候偶然发现的。在发现系外行星以前,人们通常都认为像木星这样的气态巨行星,公转周期都应该在十年以上。因此当瑞士天文学家米歇尔·迈耶和迪戴尔·邱洛兹发现第一颗系外行星时,他们简直无法确信自己的发现,因为这颗类木行星的公转周期只有短短的4.2天!但是经过确认,这的确是一颗系外行星,颠覆了过去的看法。我饶有兴致地研究下去,企图推导出某一密度行星的公转周期下限。
各位读者不妨先估计一下,它会与什么物理量有关?行星质量?母星质量?还是...?
最近评论