2 Aug

复分析学习1:揭示微分与积分的联系

笔者这段时间对复数尤其感兴趣,当然,严格来讲应该是复变函数内容,其中一个原因是通过它,我们可以把一些看似毫不相关的内容联系了起来,体现了数学的简洁美和统一美。我相当有兴趣的其中一个内容是实分析中的泰勒级数傅里叶级数。这两者都是关于某个函数的级数展开式,其中泰勒级数是用于一般函数展开的,其各项系数通过求n阶导数得到;傅里叶级数的对象是周期函数,其各项系数是通过定积分求得的。在实数世界里,两者毫不相关,但是,复分析却告诉我们:它们只是同一个东西!只是将其在不同的角度“投影”到实数世界里,就产生了不同的“物像”,以至于我们认为它们是不同东西而已。

我们直接来看一个变魔术般的运算:
我们知道,在实数世界里头,我们有
$ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$,其中$|x| < 1$

点击阅读全文...

7 Aug

一篇费曼的介绍

站长注:这篇文章来源于网络,原文是繁体中文版本,我经过修改整理而成。它原来是《费曼的6堂Easy物理课》这本书的解说,但是由于内容上的详细和扼要,我更愿意把它当做物理学家费曼的解说,与大家分享。

伟哉!费曼

社会上普遍有种错误的想法,总以为科学是完全客观的,不但不会因人而异,更不会感情用事。对比之下,科学以外的各种人类活动,则多多少少会受到一般潮流动向、突发的时尚风潮,以及当事人的性格、偏好所左右。唯有科学,得受制于科学社群都同意的规则、步骤,与严密的测试、检验。科学仅着重于得到的结论,而不在乎谁是做研究、做实验的人。

以上说法显然是无稽之谈,科学既然靠人推动,就跟其他人类活动相同,都会受到大环境趋势及个人意念的影响。在科学领域,研究潮流的趋向受到主题素材选择的影响并不大,却相当取决于当时科学家对整个世界的看法。

点击阅读全文...

8 Aug

[共享]不等式文集

最近在浏览“数学研发论坛”的时候,发现了一系列不等式手册,感觉是挺宝贵的资源,就把它转载到这里来了。

当然,里边的内容难度不一,很多东西我自己也未必用得上,甚至不能弄懂,不过还是放在这里保存,并与大家分享。

原文链接:http://bbs.emath.ac.cn/thread-1549-1-1.html

文件包内容:

152个未解决的问题.pdf
HLODER 与 MINKOWSKI不等式.pdf
不等式常用证法50种.pdf
不等式基本性质.pdf
单调函数不等式.pdf
调和函数不等式.pdf
多边形与多面体不等式.pdf
反三角函数不等式.pdf
级数不等式.pdf
数论不等式.pdf

点击阅读全文...

13 Aug

我的大学酒

农村的一个习俗就是孩子上大学了,一般要摆个大学酒,请亲朋好友们一起庆祝一番,说是光宗耀祖等等。那仪式好比婚礼仪式那样隆重......

这几天都是同学们摆大学酒的日子,10号去了东城镇喝老朱的大学酒,还要麻烦老朱他们免费接送,真的有点过意不去呀;11号是我自己的大学酒,叫了一群同学来,最后到场的有二十五个^_^,大家一起在村子礼堂二楼“包场”;12号是大宇和芬姐的,两边都答应了,所以中午去大宇那儿吃了一顿,下午去芬姐那玩了一番......

其实,于我们而言,大学酒就是一场同学们的聚会,藉着这个契机,我们昔日的同窗好友聚在一起,回忆过去,畅谈未来,讲述着我们那说不尽的友谊。我是很庆幸的一个人,三天四个人的大学酒都有我的参与,这至少给了我一些鼓励,这说明我的人际关系还不坏。谢谢邀请我的朋友们。也许很快我们就要真正地各分东西了,但是我相信,很多东西依然会存在我们的心中,那就像一条纽带,将我们紧紧联系在一起,如同天涯咫尺一般。

我相信,有很多地久天长的东西。

大学酒:

点击阅读全文...

17 Aug

电偶极子浅探(1)

设想两个带有等量异号电荷的点电荷,它们之间的距离足够小,这样的一个模型被称为电偶极子(electric dipole)。我们研究电偶极子,主要是研究它在力学方面的性质。很多东西都可以用电偶极子来近似描述,比如一个小磁体周围的磁场,还有地球本身也可以近似看做一个偶极子来描述它的磁力情况,以及一些双原子分子的模型也被可以看做一个电偶极子模型,等等。在电偶极子模型中,两电荷的距离足够小,以至于我们忽略了一些关于距离的高次方项,只保留了线性部分,但对于物理探索来说,它已经足够精确,更重要的是,它足够简单,以至于我们可以容易把它清晰地描述出来。

电偶极子.PNG

我们先来研究电偶极子产生的电势。设它们各自的电荷量为q和-q,两者距离为ε,根据库仑定律,一个点电荷产生的电势,正比于该电荷的电荷量,同时反比于到该点电荷的距离。那么,一个电偶极子产生的电势为
$U=C(\frac{q}{r}+\frac{-q}{|\vec{r}-\vec{\varepsilon}|})$————(1)

点击阅读全文...

21 Sep

军训结束了,基本在华师安家了

上网的那些事儿

从申请帐号到接通校园网络,昨天晚上我总共花了将近3个小时才实现了在校内上网......

其实这本来不是一件很复杂的事情,但对于我的笔记本就是挺麻烦的。首先是申请,向隔壁师兄咨询了网管所在后,几分钟就申请到了账号,然后回到宿舍配置电脑。按照说明,是需要安装一个锐捷客户端的,通过手机把笔记本连上网络后,花了差不多20M流量下载了这个客户端,然后发现它竟然不能在Windows 8 64bit上运行。这就头疼了,我的笔记本只有Windows8和ubuntu呀,总不能为了上网换回Windows 7吧?就这样在两个系统中来来回回弄了两个小时,期间尝试过用mentohust来替换它,但发现在Windows 8上还是很头疼地不行。最后只能通过兼容模式来解决:

右击“锐捷客户端”的安装程序——属性——兼容性——选择以Windows 7兼容模式
右击“锐捷客户端”的安装程序——以管理员身份运行——安装程序——重新启动
然后就可以启动锐捷客户端了。我们用的是4.31版本。

点击阅读全文...

18 Aug

电偶极子浅探(2)

在上一篇文章中,我们已经得到了电偶极子的等势面和电场线方程,这应该可以让我们对电偶极子的力场情况有个大致的了解了。当然,我们还是希望能够求出在这样的一个受力情况下,一个带电粒子是如何运动的。简单起见,在下面的探讨中,我们假定带电粒子的质量和电荷量均为1,至于电荷的正负,可以通过改变在$U=-\frac{k \cos\theta}{r^2}$中的k值的正负来控制。我们使用的工具依旧是理论力学中的欧拉-拉格朗日方程。

也许不少读者始终对公式感到头疼,更不用说是博大精深的理论力学了。但是请相信我,如果你花一点点心思去弄懂用变分法研究力学(或其他物理系统,但我目前只会用于力学)的基本思路和步骤,那么对你的物理研究是大有裨益的。因为在我眼中,学习了一丁点的理论力学知识后,我看到的只有物理的简洁与和谐。有兴趣的朋友可以看看我的那几篇《自然极值》等相关文章。

首先写出动能的表达式:$T=\frac{1}{2} (\dot{r}^2+r^2 \dot{\theta}^2)$

还有势能:$U=-\frac{k \cos\theta}{r^2}$

点击阅读全文...

23 Aug

当时七夕笑牵牛

一年一度的七月初七又来了。
民间有俗语说:“今日人间七月七,天上牛郎会织女。”
在我心中,这是一个很美的节日,它承载了中华传统文化,蕴含了爱情这一美好的追求。每一年我对它的感觉不不一样。
我很喜欢一首诗:

银烛秋光冷画屏,
轻罗小扇扑流萤。
天街夜色凉如水,
卧看牵牛织女星。

也许有点凄凉,但我感觉很美,那是多么浪漫的情景!我相信许多东西可以地久天长,我也相信“只羡鸳鸯不羡仙”的真实存在,尽管很多东西我还没有亲身经历过。

点击阅读全文...