12 Apr

【备忘】用树莓派3做无线路由器

3月初发布的树莓派3自带了WiFi和蓝牙,再加上它本来就有一个网口,因此俨然就是一台无线路由器了。我也忍不住入手了一个,打算用来做路由器和NAS。树莓派做路由器的教程已经有很多了,当然,基本都是基于树莓派2的,3之前的版本都没有自带WiFi,因此需要自己配无线网卡,而3自带了无线网卡,配置就方便多了。参考了两篇外文教程,成功配置,在这里记录一下。

参考教程:
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/

https://gist.github.com/Lewiscowles1986/fecd4de0b45b2029c390#file-rpi3-ap-setup-sh

点击阅读全文...

30 May

路径积分系列:1.我的毕业论文

之前承诺过会把毕业论文共享出来,让大家批评指正,却一直偷懒没动。事实上,毕业论文的主要内容就是路径积分的一些入门级别的内容,标题为《随机游走、随机微分方程与偏微分方程的路径积分方法》。我的摘要是这样写的:

本文从随机游走模型出发,得到了关于随机游走模型的一般结果;然后基于随机游走模型引入了路径积分,并且通过路径积分方法,实现了随机游走、随机微分方程与抛物型微分方程的相互转化,并给出了一些计算案例.

路径积分方法是量子理论的一种形式,但实际上它可以抽象为一个有用的数学工具,本文的主要方法正是抽象后的路径积分;其次,量子力学中有一个相当典型的抛物型偏微分方程——薛定谔方程,物理学家已经对它进行了大量的研究,有众多的成果;而随机微分方程是一个微分方程的拓展,在物理、工程、金融等很多方面都有重要应用,这个领域中也有很多研究方法;最后,随机游走是一个简单而重要的模型,它是很多扩散模型的基础,而且具有容易使用计算机模拟的特性. 因此,实现三者的转化是很有意义的.

本文有一些新的内容,比如现有文献比较少研究的不对称随机游走方面、以及现有文献比较含糊的对路径积分的介绍等,可以供同好参考,希望借此方式,能够让一些读者以更简洁明了的方式理解路径积分. 但是本文主要是陈述性的,旨在在国内推广路径积分方法. 在国外,路径积分方法得到了相当的重视,它源于量子力学,但应用已经不仅仅限于量子力学,如著作[1],因此,推广路径积分方法、增加路径积分的中文资料,是很有意义和很有必要的事情.

本文所有推导和例子均以一维为例,相应的多维问题可以类似地计算。

点击阅读全文...

30 May

路径积分系列:2.随机游走模型

随机游走模型形式简单,但通过它可以导出丰富的结果,它是物理中各种扩散模型的基础之一,它也等价于随机过程中的布朗运动.

笔者所阅的文献表明,数学家已经对对称随机游走问题作了充分研究[2],也探讨了随机游走问题与偏微分方程的关系[3],并且还研究过不对称随机游走问题[4]. 然而,已有结果的不足之处有:1、在推导随机游走问题的概率分布或者偏微分方程之时,所用的方法不够简洁明了;2、没有研究更一般的不对称随机游走问题.

本章弥补了这一不足,首先通过母函数和傅里叶变换的方法,推导出了不对称随机游走问题所满足的偏微分方程,并且提出,由于随机游走容易通过计算机模拟,因此通过随机游走来模拟偏微分方程的解是一种有效的数值途径.

模型简介

本节通过一个本质上属于二项分布的走格子问题来引入随机游走.

考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每秒钟它以相等的概率向前或向后移动一格($+1$或$-1$),问$n$秒后它所处位置的概率分布.

点击阅读全文...

2 Jun

路径积分系列:3.路径积分

路径积分是量子力学的一种描述方法,源于物理学家费曼[5],它是一种泛函积分,它已经成为现代量子理论的主流形式. 近年来,研究人员对它的兴趣愈发增加,尤其是它在量子领域以外的应用,出现了一些著作,如[7]. 但在国内了解路径积分的人并不多,很多量子物理专业的学生可能并没有听说过路径积分.

从数学角度来看,路径积分是求偏微分方程的Green函数的一种方法. 我们知道,在偏微分方程的研究中,如果能够求出对应的Green函数,那么对偏微分方程的研究会大有帮助,而通常情况下Green函数并不容易求解. 但构建路径积分只需要无穷小时刻的Green函数,因此形式和概念上都相当简单.

本章并没有新的内容,只是做了一个尝试:从随机游走问题出发,给出路径积分的一个简明而直接的介绍,展示了如何将抛物型的偏微分方程问题转化为路径积分形式.

从点的概率到路径的概率

在上一章对随机游走的研究中,我们得出从$x_0$出发,$t$时间后,走到$x_n$处的概率密度为
$$\frac{1}{\sqrt{2\pi \alpha T}}\exp\left(-\frac{(x_n-x_0)^2}{2\alpha t}\right).\tag{22}$$
这是某时刻某点到另一个时刻另一点的概率,在数学上,我们称之为扩散方程$(21)$的传播子,或者Green函数.

点击阅读全文...

18 Jun

OCR技术浅探:3. 特征提取(2)

逐层识别

当图像有效地进行分层后,我们就可以根据前面的假设,进一步设计相应的模型,通过逐层处理的方式找出图像中的文字区域.

连通性

8邻接

8邻接

可以看到,每一层的图像是由若干连通区域组成的,文字本身是由笔画较为密集组成的,因此往往文字也能够组成一个连通区域. 这里的连通定义为8邻接,即某个像素周围的8个像素都定义为邻接像素,邻接的像素则被定义为同一个连通区域.

定义了连通区域后,每个图层被分割为若干个连通区域,也就是说,我们逐步地将原始图像进行分解,如图9.

点击阅读全文...

9 Jun

路径积分系列:4.随机微分方程

本章将路径积分用于随机微分方程,并且得到了与不对称随机游走一样的结果,从而证明了它与该模型的等价性.

将路径积分用于随机微分方程的研究,这一思路由来已久. 费曼在他的著作[5]中,已经建立了路径积分与线性随机微分方程的关系. 而对于非线性的情况,也有不少研究,但比较混乱,如文献[8]甚至给出了错误的结果.

本文从路径积分的离散化概念出发,明确地建立了两个路径积分微元的雅可比行列式关系,从而对非线性随机微分方程也建立了路径积分. 本文的结果跟文献[9]的结果是一致的.

概念

本文所研究的仅仅是随机常微分方程,它与一般的常微分方程的区别在于布朗运动项的引入,如常见的一类随机微分方程为
$$dx(t)=p(x(t),t)dt + \sqrt{\alpha} dW_t.\tag{48}$$
其中$W_t$代表着一个标准的布朗运动. 由于引入了随机项,所以解$x(t)$不再是确定的,而是有一定的概率分布.

在对随机微分方程中,感兴趣的量有很多,比如关于$x$的某个量的期望、方差,或者稳定性,等等. 随机微分方程领域中有各种分析的技巧,但是显然,直接求出$x(t)$的概率分布后对概率分布进行研究,是最理想最容易的方案. 路径积分正是给出了求概率分布的一个方法.

点击阅读全文...

9 Jun

路径积分系列:5.例子和综述

路径积分方法为解决某些随机问题带来了新视角.

一个例子:股票价格模型

考虑有风险资产(如股票),在$t$时刻其价格为$S_t$,考虑的时间区间为$[0,T]$,0表示初始时间,$T$表示为到期日. $S_t$看作是随时间变化的连续时间变量,并服从下列随机微分方程:
$$dS_t^0=rS_t^0 dt;\quad dS_t=S_t(\mu dt+\sigma dW_t).\tag{70}$$
其中,$\mu$和$\sigma$是两个常量,$W_t$是一个标准布朗运动.

关于$S_t$的方程是一个随机微分方程,一般解决思路是通过随机微积分. 随机微积分有别于一般的微积分的地方在于,随机微积分在做一阶展开的时候,不能忽略$dS_t^2$项,因为$dW_t^2=dt$. 比如,设$S_t=e^{x_t}$,则$x_t=\ln S_t$
$$\begin{aligned}dx_t=&\ln(S_t+dS_t)-\ln S_t=\frac{dS_t}{S_t}-\frac{dS_t^2}{2S_t^2}\\
=&\frac{S_t(\mu dt+\sigma dW_t)}{S_t}-\frac{[S_t(\mu dt+\sigma dW_t)]^2}{2S_t^2}\\
=&\mu dt+\sigma dW_t-\frac{1}{2}\sigma^2 dW_t^2\quad(\text{其余项均低于}dt\text{阶})\\
=&\left(\mu-\frac{1}{2}\sigma^2\right) dt+\sigma dW_t\end{aligned}
,\tag{71}$$

点击阅读全文...

25 Jun

OCR技术浅探:6. 光学识别

经过第一、二步,我们已经能够找出图像中单个文字的区域,接下来可以建立相应的模型对单字进行识别.

模型选择

在模型方面,我们选择了深度学习中的卷积神经网络模型,通过多层卷积神经网络,构建了单字的识别模型.

卷积神经网络是人工神经网络的一种,已成为当前图像识别领域的主流模型. 它通过局部感知野权值共享方法,降低了网络模型的复杂度,减少了权值的数量,在网络结构上更类似于生物神经网络,这也预示着它必然具有更优秀的效果. 事实上,我们选择卷积神经网络的主要原因有:

1. 对原始图像自动提取特征 卷积神经网络模型可以直接将原始图像进行输入,免除了传统模型的人工提取特征这一比较困难的核心部分;

2. 比传统模型更高的精度 比如在MNIST手写数字识别任务中,可以达到99%以上的精度,这远高于传统模型的精度;

3. 比传统模型更好的泛化能力 这意味着图像本身的形变(伸缩、旋转)以及图像上的噪音对识别的结果影响不明显,这正是一个良好的OCR系统所必需的.

点击阅读全文...