10 Jul

弹簧双体运动

这也是我们期末考的题目,是理综的物理题之一。

一个零质量的理想弹簧两端分别系着一个质量为m的质点物体(A左B右),现给A一个向右的速度v0,使得整体开始运动。问弹簧压缩到最短时弹性势能是多少?以及B质点的最大速度是多少?

高中生是通过结合动量守恒和能量守恒来求解的。而我希望通过微分方程把握这个运动的整体信息,顺便验证弹簧能否将A的速度v0完全传递给B。

点击阅读全文...

6 Oct

《积分公式大全》网络版本

为了方便各位读者查阅,BoJone特意制作了这个积分公式表的电子版本。
数学公式采用JsMath技术显示,为了能够更清晰地显示数学公式,推荐读者下载TeX-fonts字体。

原著的具体说明和下载,请点击

浏览地址:http://kexue.fm/sci/integral/index.html

点击阅读全文...

16 Oct

球壳内部的均匀力场

也许不少同好已经在一些书籍上看到过这样的论述:

各向同性的薄球壳,其内部任意一点所受到来自球壳的引力为0。

这是一个很神奇的事情,因为这意味着这是一个均匀引力场,虽然我们在很多问题上都假设了引力场均匀,但是我们却很难知道如何构造一个真正的均匀引力场(而构造一个真正的均匀力场都分析某些问题是很有用的,例如推导一些比例系数),现在眼前就摆着一个均匀引力场了。并且利用它我们就可以计算均匀实心球内部一点所受到的引力(等于它与一个球体的引力)。而关于它的证明,当然也可以利用微积分的知识,可是我们在这里介绍一个初等的方法,相信它会使我们更加感受到物理的神奇和有趣。

点击阅读全文...

23 Oct

科学空间:2010年11月重要天象

2009leo-songjian

2009leo-songjian

十一月夜空的主角,将是几个颇具看点的流星雨,南、北金牛以及狮子座流星雨的极大非常值得期待。当然,这段时间观测条件最好的行星还是木星,而到了月底,水星和金星的观测条件也将逐渐转好。其中水星是昏星,日落后在西方的低空中隐约可见,而金星作为晨星将在日出前出现在东方天空中,亮度可达-4.6等。

点击阅读全文...

22 Oct

未来的天地枢纽——太空天梯

开发太空天梯

开发太空天梯

漫话
BoJone认为,科学的意义并非在于无休止地计算,而是利用有限的科学理论来解释尽可能多的自然、生活现象。正因如此,科学家们追求和谐、简洁、优美的科学理论。科学就是想方设法地把未知变成已知,并在此基础上进一步发展。

随着媒体技术的发展,我们接触信息的渠道越来越多。每每我们从互联网或报纸上看到一则科学新闻时,我们几乎都会为之兴奋。但是,外行看热闹,内行看门道。对于真正热爱科学的朋友来说,也许会更加感兴趣新闻内容的来由。也就是说,我们希望进一步了解结论是怎样得出来的——哪怕只是在很浅的层面上认识。

点击阅读全文...

30 Oct

“天地图”试用——很细致,有瑕疵

刚才在报纸上看到了一个由国家测绘局建设的中国公众版国家地理信息公共服务平台“天地图”网站,而且被称为“中国自主研发的网络地图服务网站”(注意:“天地图”的自主知识产权主要体现在在线服务软件产品方面,卫星影像数据是通过商业合作的方式使用了来自不同商业卫星的影像数据。)

马上使用,由于我的家乡的偏远,因此在很多电子地图上的显示都不理想,用此来测试显然是最佳选择。以下是结果

BoJone的家乡

BoJone的家乡

点击阅读全文...

31 Oct

当酸溶液遇到了更多的水时...

BoJone:阅读本文需要有电离平衡的相关知识作为基础。

这两个星期我们都在学习高中的人教版《化学选修4》中的电离平衡相关知识。虽然我们是“重点班”,可是进展仍然相当地慢。关于电离平衡,有同学向我提出过一个问题:

酸溶液继续加水后,为什么pH会趋于7?(常温常压)

显然,这个问题是很好理解的,因为加水后$H^+$被稀释了。然后我更感兴趣是由此引申出的一个问题:

(强)酸溶液继续加水后,平衡向哪边移动?

点击阅读全文...

6 Nov

这个星期对微分方程的认识

这个星期研究了两道微分方程问题:“导弹跟踪”以及“太阳炉”问题。从中我加深了对微分方程的理解,也熟悉了微分方程的相关运算。仅此记录,权当抛砖引玉。

一、微分方程的本质

很多读者都知道,自从牛顿和莱布尼兹发明微积分之后,微积分就迅速地渗透到了几乎所有的学科,后来发展出许多出色的分支,如变分、微分方程等。众所周知,微分方程是解决很多重要问题的工具。不知道各位读者对微分及微分方程的认识如何?其实对于常微分方程而言,它的本质和我们已经学习过的代数方程一样,只不过相互之间的对应运算关系除了常规的加减乘除幂等之外,还多了两个相互关系:微分和积分。例如对于一阶微分方程$\dot{y}=f(x,y)$,也许大家都认为它是一个二元方程,其实不然,这是一个“四个未知数、三道方程”所组成的方程组,我们可以将它写成

$$dy=f(x,y)dx,y=\int dy,x=\int dx$$

点击阅读全文...