概率视角下的线性模型:逻辑回归有解析解吗?
By 苏剑林 | 2021-07-22 | 75286位读者 | 引用我们知道,线性回归是比较简单的问题,它存在解析解,而它的变体逻辑回归(Logistic Regression)却没有解析解,这不能不说是一个遗憾。因为逻辑回归虽然也叫“回归”,但它实际上是用于分类问题的,而对于很多读者来说分类比回归更加常见。准确来说,我们说逻辑回归没有解析解,说的是“最大似然估计下逻辑回归没有解析解”。那么,这是否意味着,如果我们不用最大似然估计,是否能找到一个可用的解析解呢?
本文将会从非最大似然的角度,推导逻辑回归的一个解析解,简单的实验表明它效果不逊色于梯度下降求出来的最大似然解。此外,这个解析解还易于推广到单层Softmax多分类模型。
线性Transformer应该不是你要等的那个模型
By 苏剑林 | 2021-08-09 | 99486位读者 | 引用在本博客中,我们已经多次讨论过线性Attention的相关内容。介绍线性Attention的逻辑大体上都是:标准Attention具有$\mathcal{O}(n^2)$的平方复杂度,是其主要的“硬伤”之一,于是我们$\mathcal{O}(n)$复杂度的改进模型,也就是线性Attention。有些读者看到线性Attention的介绍后,就一直很期待我们发布基于线性Attention的预训练模型,以缓解他们被BERT的算力消耗所折腾的“死去活来”之苦。
然而,本文要说的是:抱有这种念头的读者可能要失望了,标准Attention到线性Attention的转换应该远远达不到你的预期,而BERT那么慢的原因也并不是因为标准Attention的平方复杂度。
BERT之反思
按照直观理解,平方复杂度换成线性复杂度不应该要“突飞猛进”才对嘛?怎么反而“远远达不到预期”?出现这个疑惑的主要原因,是我们一直以来都没有仔细评估一下常规的Transformer模型(如BERT)的整体计算量。
模型优化漫谈:BERT的初始标准差为什么是0.02?
By 苏剑林 | 2021-11-08 | 88797位读者 | 引用前几天在群里大家讨论到了“Transformer如何解决梯度消失”这个问题,答案有提到残差的,也有提到LN(Layer Norm)的。这些是否都是正确答案呢?事实上这是一个非常有趣而综合的问题,它其实关联到挺多模型细节,比如“BERT为什么要warmup?”、“BERT的初始化标准差为什么是0.02?”、“BERT做MLM预测之前为什么还要多加一层Dense?”,等等。本文就来集中讨论一下这些问题。
梯度消失说的是什么意思?
在文章《也来谈谈RNN的梯度消失/爆炸问题》中,我们曾讨论过RNN的梯度消失问题。事实上,一般模型的梯度消失现象也是类似,它指的是(主要是在模型的初始阶段)越靠近输入的层梯度越小,趋于零甚至等于零,而我们主要用的是基于梯度的优化器,所以梯度消失意味着我们没有很好的信号去调整优化前面的层。
你的语言模型有没有“无法预测的词”?
By 苏剑林 | 2022-04-20 | 20348位读者 | 引用众所周知,分类模型通常都是先得到编码向量,然后接一个Dense层预测每个类别的概率,而预测时则是输出概率最大的类别。但大家是否想过这样一种可能:训练好的分类模型可能存在“无法预测的类别”,即不管输入是什么,都不可能预测出某个类别$k$,类别$k$永远不可能成为概率最大的那个。
当然,这种情况一般只出现在类别数远远超过编码向量维度的场景,常规的分类问题很少这么极端的。然而,我们知道语言模型本质上也是一个分类模型,它的类别数也就是词表的总大小,往往是远超过向量维度的,那么我们的语言模型是否有“无法预测的词”?(只考虑Greedy解码)
是否存在
ACL2022的论文《Low-Rank Softmax Can Have Unargmaxable Classes in Theory but Rarely in Practice》首先探究了这个问题,正如其标题所言,答案是“理论上存在但实际出现概率很小”。
生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼
By 苏剑林 | 2022-06-13 | 386133位读者 | 引用说到生成模型,VAE、GAN可谓是“如雷贯耳”,本站也有过多次分享。此外,还有一些比较小众的选择,如flow模型、VQ-VAE等,也颇有人气,尤其是VQ-VAE及其变体VQ-GAN,近期已经逐渐发展到“图像的Tokenizer”的地位,用来直接调用NLP的各种预训练方法。除了这些之外,还有一个本来更小众的选择——扩散模型(Diffusion Models)——正在生成模型领域“异军突起”,当前最先进的两个文本生成图像——OpenAI的DALL·E 2和Google的Imagen,都是基于扩散模型来完成的。
从本文开始,我们开一个新坑,逐渐介绍一下近两年关于生成扩散模型的一些进展。据说生成扩散模型以数学复杂闻名,似乎比VAE、GAN要难理解得多,是否真的如此?扩散模型真的做不到一个“大白话”的理解?让我们拭目以待。
生成扩散模型漫谈(三):DDPM = 贝叶斯 + 去噪
By 苏剑林 | 2022-07-19 | 132943位读者 | 引用到目前为止,笔者给出了生成扩散模型DDPM的两种推导,分别是《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中的通俗类比方案和《生成扩散模型漫谈(二):DDPM = 自回归式VAE》中的变分自编码器方案。两种方案可谓各有特点,前者更为直白易懂,但无法做更多的理论延伸和定量理解,后者理论分析上更加完备一些,但稍显形式化,启发性不足。
在这篇文章中,我们再分享DDPM的一种推导,它主要利用到了贝叶斯定理来简化计算,整个过程的“推敲”味道颇浓,很有启发性。不仅如此,它还跟我们后面将要介绍的DDIM模型有着紧密的联系。
Ladder Side-Tuning:预训练模型的“过墙梯”
By 苏剑林 | 2022-06-20 | 66867位读者 | 引用如果说大型的预训练模型是自然语言处理的“张良计”,那么对应的“过墙梯”是什么呢?笔者认为是高效地微调这些大模型到特定任务上的各种技巧。除了直接微调全部参数外,还有像Adapter、P-Tuning等很多参数高效的微调技巧,它们能够通过只微调很少的参数来达到接近全量参数微调的效果。然而,这些技巧通常只是“参数高效”而并非“训练高效”,因为它们依旧需要在整个模型中反向传播来获得少部分可训练参数的梯度,说白了,就是可训练的参数确实是少了很多,但是训练速度并没有明显提升。
最近的一篇论文《LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning》则提出了一个新的名为“Ladder Side-Tuning(LST)”的训练技巧,它号称同时达到了参数高效和训练高效。是否真有这么理想的“过墙梯”?本来就让我们一起来学习一下。
生成扩散模型漫谈(四):DDIM = 高观点DDPM
By 苏剑林 | 2022-07-27 | 199095位读者 | 引用相信很多读者都听说过甚至读过克莱因的《高观点下的初等数学》这套书,顾名思义,这是在学到了更深入、更完备的数学知识后,从更高的视角重新审视过往学过的初等数学,以得到更全面的认知,甚至达到温故而知新的效果。类似的书籍还有很多,比如《重温微积分》、《复分析:可视化方法》等。
回到扩散模型,目前我们已经通过三篇文章从不同视角去解读了DDPM,那么它是否也存在一个更高的理解视角,让我们能从中得到新的收获呢?当然有,《Denoising Diffusion Implicit Models》介绍的DDIM模型就是经典的案例,本文一起来欣赏它。
思路分析
在《生成扩散模型漫谈(三):DDPM = 贝叶斯 + 去噪》中,我们提到过该文章所介绍的推导跟DDIM紧密相关。具体来说,文章的推导路线可以简单归纳如下:
\begin{equation}p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1})\xrightarrow{\text{推导}}p(\boldsymbol{x}_t|\boldsymbol{x}_0)\xrightarrow{\text{推导}}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)\xrightarrow{\text{近似}}p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)\end{equation}
最近评论