18 Apr

纠缠的时空(三):长度收缩和时间延缓

我们之前通过矩阵变换方式推导出了洛伦兹变换以及速度合成公式等结论,不得不说,矩阵推导方式有种引人入胜的魅力。今天,在讲述相对论(包括电动力学、广义相对论)的书籍里边,在数学形式上取而代之了张量这一工具,这实际上是对矩阵的一个推广(之前已经提到过,二阶张量相当于矩阵)。采用这样的形式在于它充分体现了相对论的对称和变换关系。本文将来谈及狭义相对论的一些基本结论,包括同时性、长度收缩、时间延缓等。

本文的光速$c=1$。

同时的相对性

在同一时空中,采取两个时空坐标进行洛伦兹变换,再作差,我们得到:
\begin{equation}\left[\begin{array}{c} \Delta x\\ \Delta t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}\Delta x'\\ \Delta t' \end{array}\right]\end{equation}

点击阅读全文...

20 Jun

《虚拟的实在(3)》——相对论动力学

半个多月没有写文章了,一是因为接近期末考了,比较忙,当然最主要的原因还是人变懒了,呵呵,别人是忙里偷闲,我是闲里偷懒了。

这篇文章主要跟大家分享一下相对论动力学的知识。我们之前已经接触过相对论的坐标变换了,接下来的任务应该是把经典力学的动力学定律改成为相对论版本的,这显然也是学习场论的必经之路——懂得如何构造力学定律的相对版版本,是懂得构造相对论性场的基础。和朗道的《力学》与《场论》一样,我们的主线就是“最小作用量原理”。让我们回忆一下,在经典力学中,一个自由粒子的作用量是

$$S_m=\int Ldt=\int \frac{1}{2} m v^2dt$$

点击阅读全文...

5 Jul

齐次对称多项式初等表示的新尝试

这是我的这学期高等代数课的一个小论文。说到这里,其实我挺喜欢那些不用考试,通过平时考核以及写论文、报告或者做实验的方式来评成绩的方式,毕竟我觉得这才是比较综合地体现了知识和技能的水平(当然更重要的一个原因是我比较喜欢写作啦~~)。我们高等代数有两门课程,一是基本的上课,二是研讨课,分别考核。老师照顾我们,研讨课不用考试,写小论文就行了。Yeah~~

我写的是有关对称多项式的。其实这文章在半个学期之前就酝酿着了,当时刚学到对称多项式的初等表示。所谓初等表示,就是将一个多元对称多项式表示为$\sigma_1,\sigma_2,\sigma_3,...$的组合。其中
$$\begin{aligned}\sigma_1=x_1+x_2+...+x_n \\ \sigma_2=x_1 x_2+x_1 x_3+...+x_1 x_n+x_2 x_3+...+x_{n-1} x_n \\ ... \\ \sigma_n=x_1 x_2 ... x_n\end{aligned}$$
书本上给出了待定系数法,但是每次都要求解方程组,让我甚是烦恼,所以我研究直接展开的方案,最终得出了两种方法。当时也刚好接触着张量的知识,了解到“爱因斯坦求和约定”,于是想充分发挥其威力,就促成了这篇文章。其实我自定义了“方括弧”和“圆括弧”两种运算,都是符号上的简化。两种方法在某种意义上相互补充,笔者自感颇为满意,遂与大家分享。具体内容就不贴出来了,请大家下载pdf文件观看吧。

点击阅读全文...

30 Jul

变分法的一个技巧及其“误用”

不可否认,变分法是非常有用而绝妙的一个数学工具,它“自动地”为我们在众多函数中选出了最优的一个,而免除了具体的分析过程。物理中的最小作用量原理则让变分法有了巨大的用武之地,并反过来也推动了变分法的发展。但是变分法的一个很明显的特点就是在大多数情况下计算相当复杂,甚至如果“蛮干”的话我们几乎连微分方程组都列不出来。因此,一些有用的技巧是很受欢迎的。本文就打算介绍这样的一个小技巧,来让某些变分问题得到一定的化简。

我是怎么得到这个技巧的呢?事实上,那是几个月前我在阅读《引力与时空》时,读到变分原理那一块时我怎么也读不懂,想不明白。明明我觉得是错误的东西,为什么可以得到正确的结果?我的数学直觉告诉我绝对是作者的错,可是我又想不出作者哪里错了,所以就一直把这个问题搁置着。最近我终于得到了自己比较满意的答案,并且窃认为是本文所要讲的这个技巧却被物理学家“误用”了。

技巧

首先来看通常我们是怎么处理变分问题的,以一元函数为例,对于求
$$S=\int L(x,\dot{x},t)dt$$

点击阅读全文...

29 Oct

求解微分方程的李对称方法(一)

马里乌斯·索菲斯·李

马里乌斯·索菲斯·李

在这篇日志发表之前,科学空间在整个十月就只是在国庆期间发了一篇小感想,这是比较少见的。一个小原因是这学期社团(广播台)方面的活动有点多,当然这不是主要的,其实这个月我大多数课余时间放到了两件事情上:一是无线电路的入门,二就是本文所要讲的《求解微分方程的李对称方法》

李对称方法主要是通过发现微分方程的对称性来求解微分方程。我首次接触到这个方法是在一本叫《微分方程与数学物理问题》的书上边,书中写得很清晰易懂,后来我还买了类似的《微分方程的对称与积分方法》,后者相对抽象一些,讨论也深入一些。在我目前发现的中文书籍中,这是唯一的两本以李对称方法求解微分方程为主题的书。这两本书还有一个共同特点,就是它们都是外国教材的翻译版。

点击阅读全文...

14 Nov

力学系统及其对偶性(二)

如果仅仅从牛顿第二定律的角度来进行变换推导,那么关于力学定律的对偶性的结果无疑仅仅是初等的。对于理论分析来说,更方便的是从做小作用量原理的形式出发,事实上,这种形式计算量也是很少的,甚至比直接代入运动方程变换更加便捷。

上一篇文章中我们讲到,变换$z \mapsto z^2$将一个原点为几何中心的椭圆映射为一个原点为焦点的椭圆,并且相信这种变换可以将胡克定律跟牛顿万有引力定律联系起来。然后就立即给出了变换$w=z^2,d\tau=|z^2|dt$。但是这个变换本身并不显然的,假如我们仅仅发现了$z \mapsto z^2$的几何意义,如何相应地得出$d\tau=|z^2|dt$这个变换呢?本文初步地解决这个问题。

几何作用量

让我们回顾力学的最小作用量原理:
$$ S = \int_{{t_1}}^{{t_2}} L dt = \int_{{t_1}}^{{t_2}} {(T - U)} dt $$

点击阅读全文...

15 Nov

力学系统及其对偶性(三)

在上一篇文章中,我已经初步地从最小作用量原理的角度来观察对偶定律的表现。虽然那是一种便捷有效的方法,但是还是给我们流下了一些遗憾。上一节是从几何形式的作用量原理出发的,而没有在一般形式的作用量框架下讨论。因为如果在$S=\int Ldt=\int (T-U)dt$的形式下讨论坐标变换问题会出现困难,困难源于我们进行了变换$d\tau=|z|^2 dt$,这导致了时间和空间的耦合,变分不能简单地进行。但是,这并非无法解决的问题。我们还是可以在基本的作用量原理之下讨论变换问题。下面将对此问题进行讨论。

变分中的变量代换

考虑一个一般的保守系统的作用量:
$$S=\int_{t_1}^{t_2} L(q,\frac{dq}{dt})dt$$

点击阅读全文...

26 Nov

求解微分方程的李对称方法(二)

由于重装系统时的粗心大意,笔者把《求解微分方程的李对称方法》的Word文档弄丢了,更不幸的是存有该文档的U盘也弄丢了~没办法,只好重新把这篇文章录入了。幸好之前曾把它打印成纸质版,还有旧稿可以参考。现发布《求解微分方程的李对称方法(二)》,希望能够为对李对称方法有兴趣的朋友提供些许资源。

相比(一),(二)将所有内容重新用CTex录入了,果然,$\LaTeX$才是写数学论文软件中的佼佼者,虽然是纯代码编辑,但是这正符合我追求简洁清晰的风格。在内容上,(二)增加了一阶常微分方程组的内容,并对(一)的部分细节做了修改,本文完成后就初步相对完整地叙述了一阶常微分方程组的李对称积分的思路,内容增加到了13页。而在接下来的(三)中,将会提供李代数的内容;如果有(四)的话,就会谈到李对称方法的计算机实现。希望大家会喜欢这系列文章。更期待大家的读后感(包括挑错)^_^

点击阅读全文...