12 Feb

再来一顿贺岁宴:从K-Means到Capsule

在本文中,我们再次对Capsule进行一次分析。

整体上来看,Capsule算法的细节不是很复杂,对照着它的流程把Capsule用框架实现它基本是没问题的。所以,困难的问题是理解Capsule究竟做了什么,以及为什么要这样做,尤其是Dynamic Routing那几步。

为什么我要反复对Capsule进行分析?这并非单纯的“炒冷饭”,而是为了得到对Capsule原理的理解。众所周知,Capsule给人的感觉就是“有太多人为约定的内容”,没有一种“虽然我不懂,但我相信应该就是这样”的直观感受。我希望尽可能将Capsule的来龙去脉思考清楚,使我们能觉得Capsule是一个自然、流畅的模型,甚至对它举一反三。

《揭开迷雾,来一顿美味的Capsule盛宴》中,笔者先分析了动态路由的结果,然后指出输出是输入的某种聚类,这个“从结果到原因”的过程多多少少有些望文生义的猜测成分;这次则反过来,直接确认输出是输入的聚类,然后反推动态路由应该是怎样的,其中含糊的成分大大减少。两篇文章之间有一定的互补作用。

点击阅读全文...

29 Jan

网站更新记录(2018年01月)

也许读者会发现,这几天访问科学空间可能出现不稳定的情况,原因是我这几天都在对网站进行调整。

这次的调整幅度很大,不过从外表上可能很难发现,特此记录留念一下。主要的更新内容包括:

1、主题的优化:本博客用的geekg主题其实比较老了,去年花钱请人对它进行了第一次大升级,加入了响应式设计,这几天主要解决该主题的一些历史遗留问题,包括图片显示、边距、排版等细微调整;

2、内部的优化:大幅度减少了插件的使用,把一些基本的功能(如网站目录、归档页)等都内嵌到主题中,减少了对插件的依赖,也提升了可用性;

3、文章的优化:其实这也是个历史遗留问题,主要是早期写文章的时候比较随意,html代码、公式的LaTeX代码等都不规范,因此早期的文章显示效果可能比较糟糕,于是我就做了一件很疯狂的事情——把800多篇文章都过一遍!经过了两天多的时间,基本上修复了早期文章的大部分问题;

4、域名的优化:网站全面使用https!网站放在阿里云上面,可是阿里云有一套自以为是的监管系统,无故屏蔽我的一些页面。为了应对阿里云的恶意屏蔽,只好转向https,当然,这不会对读者平时访问造成影响,因为跳转https是自动的。目前两个域名spaces.ac.cn和kexue.fm都会自动跳转到https。

30 Jan

【分享】千万级百度知道语料

发布

2018年01月30日

数目

共1千万条

格式

[
  {
    "url": "http://zhidao.baidu.com/question/565618371557484884.html",
    "question": "学文员有哪些专科学校",
    "tags": [
      "学校",
      "专科",
      "院校信息"
    ]
  },
  {
    "url": "http://zhidao.baidu.com/question/2079794100345438428.html",
    "question": "网赌和澳门赌有区别吗",
    "tags": [
      "网络",
      "澳门",
      "赌博"
    ]
  }
]

点击阅读全文...

2 Mar

三味Capsule:矩阵Capsule与EM路由

事实上,在论文《Dynamic Routing Between Capsules》发布不久后,一篇新的Capsule论文《Matrix Capsules with EM Routing》就已经匿名公开了(在ICLR 2018的匿名评审中),而如今作者已经公开,他们是Geoffrey Hinton, Sara Sabour, Nicholas Frosst。不出大家意料,作者果然有Hinton。

大家都知道,像Hinton这些“鼻祖级”的人物,发表出来的结果一般都是比较“重磅”的。那么,这篇新论文有什么特色呢?

在笔者的思考过程中,文章《Understanding Matrix capsules with EM Routing 》给了我颇多启示,知乎上各位大神的相关讨论也加速了我的阅读,在此表示感谢。

论文摘要

让我们先来回忆一下上一篇介绍《再来一顿贺岁宴:从K-Means到Capsule》中的那个图

Capsule框架的简明示意图

Capsule框架的简明示意图

这个图表明,Capsule事实上描述了一个建模的框架,这个框架中的东西很多都是可以自定义的,最明显的是聚类算法,可以说“有多少种聚类算法就有多少种动态路由”。那么这次Hinton修改了什么呢?总的来说,这篇新论文有以下几点新东西:

1、原来用向量来表示一个Capsule,现在用矩阵来表示;

2、聚类算法换成了GMM(高斯混合模型);

3、在实验部分,实现了Capsule版的卷积。

点击阅读全文...

2 May

基于Conv1D的光谱分类模型(一维序列分类)

前段时间天池出了个天文数据挖掘竞赛——LAMOST光谱分类(将对应的光谱识别为4类中的一类),虽然没有奖金,但还是觉得挺有意思,所以就报名参加了。做了一段时间,成绩自我感觉还可以,然而最后我却忘记了(或者说根本就没留意到)初赛最后两天还有一步是提交新的测试集结果,然后就没有然后了,留下了一个未竟的模型,可谓“出师未捷身先死”,还是被自己弄死的~

天文数据挖掘大赛——天体光谱智能分类

天文数据挖掘大赛——天体光谱智能分类

后来跟其他参赛选手讨论了一下,发现其实我的这个模型还是不错的。当时我记得初赛第一名的成绩是0.83+,而我当时的成绩是0.82+,排名大概是第4、5左右,而且据说很多分数在0.8+的队伍都已经使用了融合模型,而我这0.82+的成绩仅仅是单模型的结果~在平时的群聊中发现也有不少朋友在做一维序列分类模型,而光谱分类本质上也就是一个一维的序列分类,所以分享一下模型,估计对相关朋友会有一定的参考价值。

模型

事实上也不是什么特别的模型,就是普通的一维卷积加残差,对于熟悉图像处理的朋友,这实在是再普通不过的结构了。

点击阅读全文...

24 Mar

基于CNN和VAE的作诗机器人:随机成诗

前几日写了一篇VAE的通俗解读,也得到了一些读者的认可。然而,你是否厌倦了每次介绍都只有一个MNIST级别的demo?不要急,这就给大家带来一个更经典的VAE玩具:机器人作诗。

为什么说“更经典”呢?前一篇文章我们说过用VAE生成的图像相比GAN生成的图像会偏模糊,也就是在图像这一“仗”上,VAE是劣势。然而,在文本生成这一块上,VAE却漂亮地胜出了。这是因为GAN希望把判别器(度量)也直接训练出来,然而对于文本来说,这个度量很可能是离散的、不可导的,因此纯GAN就很难训练了。而VAE中没有这个步骤,它是通过重构输入来完成的,这个重构过程对于图像还是文本都可以进行。所以,文本生成这件事情,对于VAE来说它就跟图像生成一样,都是一个基本的、直接的应用;对于(目前的)GAN来说,却是艰难的象征,是它挥之不去的“心病”。

嗯,古有曹植七步作诗,今有VAE随机成诗,让我们开始吧~

模型

对于很多人来说,诗是一个很美妙的玩意,美妙之处在于大多数人都不真正懂得诗,但大家对诗的模样又有一知半解的认识。因此,只要生成的“诗”稍微像模像样一点,我们通常都会认为机器人可以作诗了。因此,所谓作诗机器人,是一个纯粹的玩具了,能作几句诗,也不意味着普通语言的生成能力有多好,也不意味着我们对NLP的理解有多深。

CNN + VAE

就本文的玩具而言,其实是一个比较简单的模型,主要是把一维CNN和VAE结合了起来。因为生成的诗长度是固定的,所以不管是encoder还是decoder,我都只是用了纯CNN来做。模型的结构图大概是:

cnn + vae 诗歌生成模型

cnn + vae 诗歌生成模型

点击阅读全文...

18 Mar

变分自编码器(一):原来是这么一回事

过去虽然没有细看,但印象里一直觉得变分自编码器(Variational Auto-Encoder,VAE)是个好东西。于是趁着最近看概率图模型的三分钟热度,我决定也争取把VAE搞懂。于是乎照样翻了网上很多资料,无一例外发现都很含糊,主要的感觉是公式写了一大通,还是迷迷糊糊的,最后好不容易觉得看懂了,再去看看实现的代码,又感觉实现代码跟理论完全不是一回事啊。

终于,东拼西凑再加上我这段时间对概率模型的一些积累,并反复对比原论文《Auto-Encoding Variational Bayes》,最后我觉得我应该是想明白了。其实真正的VAE,跟很多教程说的的还真不大一样,很多教程写了一大通,都没有把模型的要点写出来~于是写了这篇东西,希望通过下面的文字,能把VAE初步讲清楚。

分布变换

通常我们会拿VAE跟GAN比较,的确,它们两个的目标基本是一致的——希望构建一个从隐变量$Z$生成目标数据$X$的模型,但是实现上有所不同。更准确地讲,它们是假设了$Z$服从某些常见的分布(比如正态分布或均匀分布),然后希望训练一个模型$X=g(Z)$,这个模型能够将原来的概率分布映射到训练集的概率分布,也就是说,它们的目的都是进行分布之间的变换

生成模型的难题就是判断生成分布与真实分布的相似度,因为我们只知道两者的采样结果,不知道它们的分布表达式

生成模型的难题就是判断生成分布与真实分布的相似度,因为我们只知道两者的采样结果,不知道它们的分布表达式

点击阅读全文...

15 Mar

从最大似然到EM算法:一致的理解方式

最近在思考NLP的无监督学习和概率图相关的一些内容,于是重新把一些参数估计方法理了一遍。在深度学习中,参数估计是最基本的步骤之一了,也就是我们所说的模型训练过程。为了训练模型就得有个损失函数,而如果没有系统学习过概率论的读者,能想到的最自然的损失函数估计是平均平方误差,它也就是对应于我们所说的欧式距离。而理论上来讲,概率模型的最佳搭配应该是“交叉熵”函数,它来源于概率论中的最大似然函数。

最大似然

合理的存在

何为最大似然?哲学上有句话叫做“存在就是合理的”,最大似然的意思是“存在就是最合理的”。具体来说,如果事件$X$的概率分布为$p(X)$,如果一次观测中具体观测到的值分别为$X_1,X_2,\dots,X_n$,并假设它们是相互独立,那么
$$\mathcal{P} = \prod_{i=1}^n p(X_i)\tag{1}$$
是最大的。如果$p(X)$是一个带有参数$\theta$的概率分布式$p_{\theta}(X)$,那么我们应当想办法选择$\theta$,使得$\mathcal{L}$最大化,即
$$\theta = \mathop{\text{argmax}}_{\theta} \mathcal{P}(\theta) = \mathop{\text{argmax}}_{\theta}\prod_{i=1}^n p_{\theta}(X_i)\tag{2}$$

点击阅读全文...