Loading [MathJax]/extensions/TeX/boldsymbol.js
24 Mar

高阶muP:更简明但更高明的谱条件缩放

在文章《初探muP:超参数的跨模型尺度迁移规律》中,我们基于前向传播、反向传播、损失增量和特征变化的尺度不变性推导了muP(Maximal Update Parametrization)。可能对于部分读者来说,这一过程还是显得有些繁琐,但实际上它比原始论文已经明显简化。要知道,我们是在单篇文章内相对完整地介绍的muP,而muP的论文实际上是作者Tensor Programs系列论文的第5篇!

不过好消息是,作者在后续的研究《A Spectral Condition for Feature Learning》中,发现了一种新的理解方式(下称“谱条件”),它比muP的原始推导和笔者的推导都更加直观和简洁,但却能得到比muP更丰富的结果,可谓muP的高阶版本,简明且不失高明的代表作。

准备工作

顾名思义,谱条件(Spectral Condition)跟谱范数(Spectral Norm)相关,它的出发点是谱范数的一个基本不等式:
\begin{equation}\Vert\boldsymbol{x}\boldsymbol{W}\Vert_2\leq \Vert\boldsymbol{x}\Vert_2 \Vert\boldsymbol{W}\Vert_2\label{neq:spec-2}\end{equation}

点击阅读全文...

10 Apr

矩阵的有效秩(Effective Rank)

秩(Rank)是线性代数中的重要概念,它代表了矩阵的内在维度。然而,数学上对秩的严格定义,很多时候并不完全适用于数值计算场景,因为秩等于非零奇异值的个数,而数学上对“等于零”这件事的理解跟数值计算有所不同,数学上的“等于零”是绝对地、严格地等于零,哪怕是10^{-100}也是不等于零,但数值计算不一样,很多时候10^{-10}就可以当零看待。

因此,我们希望将秩的概念推广到更符合数值计算特性的形式,这便是有效秩(Effective Rank)概念的由来。

误差截断

需要指出的是,目前学术界对有效秩并没有统一的定义,接下来我们介绍的是一些从不同角度切入来定义有效秩的思路。对于实际问题,读者可以自行选择适合的定义来使用。

点击阅读全文...

2 Apr

通过梯度近似寻找Normalization的替代品

不知道大家有没有留意到前段时间的《Transformers without Normalization》?这篇论文试图将Transformer模型中的Normalization层用一个Element-wise的运算DyT替代,以期能提高速度并保持效果。这种基础架构的主题本身自带一点吸引力,加之Kaiming He和Yann LeCun两位大佬挂名,所以这篇论文发布之时就引起了不少围观,评价也是有褒有贬。

无独有偶,上周的一篇新论文《The Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions》从梯度分析和微分方程的视角解读了DyT,并提出了新的替代品。个人感觉这个理解角度非常本质,遂学习和分享一波。

写在前面

DyT全称是Dynamic Tanh,它通过如下运算来替代Normalization层:
\begin{equation}\mathop{\text{DyT}}(\boldsymbol{x}) = \boldsymbol{\gamma} \odot \tanh(\alpha \boldsymbol{x}) + \boldsymbol{\beta}\end{equation}

点击阅读全文...