Loading [MathJax]/extensions/TeX/boldsymbol.js
14 Sep

老读者也许会发现,相比之前的更新频率,这篇文章可谓是“姗姗来迟”,因为这篇文章“想得太多”了。

通过前面九篇文章,我们已经对生成扩散模型做了一个相对全面的介绍。虽然理论内容很多,但我们可以发现,前面介绍的扩散模型处理的都是连续型对象,并且都是基于正态噪声来构建前向过程。而“想得太多”的本文,则希望能够构建一个能突破以上限制的扩散模型统一框架(Unified Diffusion Model,UDM):

1、不限对象类型(可以是连续型\boldsymbol{x},也可以是离散型的\boldsymbol{x});

2、不限前向过程(可以用加噪、模糊、遮掩、删减等各种变换构建前向过程);

3、不限时间类型(可以是离散型的t,也可以是连续型的t);

4、包含已有结果(可以推出前面的DDPM、DDIM、SDE、ODE等结果)。

这是不是太过“异想天开”了?有没有那么理想的框架?本文就来尝试一下。

点击阅读全文...

14 Aug

Transformer升级之路:13、逆用Leaky ReRoPE

上周在《Transformer升级之路:12、无限外推的ReRoPE?》中,笔者提出了ReRoPE和Leaky ReRoPE,诸多实验结果表明,它们能够在几乎不损失训练效果的情况下免微调地扩展LLM的Context长度,并且实现了“longer context, lower loss”的理想特性,此外跟NTK-aware Scaled RoPE不同的是,其中ReRoPE似乎还有表现出了无限的Context处理能力。

总之,ReRoPE看起来相当让人满意,但美中不足的是会增加推理成本,具体表现为第一步推理需要算两次Attention,以及后续每步推理需要重新计算位置编码。本文试图通过在训练中逆用Leaky ReRoPE的方法来解决这个问题。

回顾

让我们不厌其烦地重温一下:RoPE形式上是一种绝对位置编码,但实际达到的效果是相对位置编码,对应的相对位置矩阵是:
\begin{equation}\begin{pmatrix}0 & \\ 1 & 0 & \\ 2 & 1 & 0 &\\ 3 & 2 & 1 & 0 & \\ \ddots & 3 & 2 & 1 & 0 & \\ \ddots & \ddots & 3 & 2 & 1 & 0 & \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \small{L - 2} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \small{L - 1} & \small{L - 2} & \ddots & \ddots & \ddots & 3 & 2 & 1 & 0 & \\ \end{pmatrix}\label{eq:rope}\end{equation}

点击阅读全文...

16 Sep

随机分词浅探:从Viterbi Decoding到Viterbi Sampling

上一篇文章《大词表语言模型在续写任务上的一个问题及对策》发布后,很快就有读者指出可以在训练阶段引入带有随机性的分词结果来解决同样的问题,并且已经有论文和实现。经过进一步查阅学习,笔者发现这是一个名为Subword Regularization的技巧,最早应用在NMT(机器翻译)中,目前SentencePiece也有相应的实现。看起来这个技巧确实能缓解前述问题,甚至有助于增强语言模型的容错能力,所以就有了将它加进去BytePiece的想法。

那么问题来了,如何将确定性分词改为随机性分词呢?BytePiece是基于Unigram模型的,它通过Viterbi算法找最大概率的分词方案,既然有概率,是否就可以自然地导出随机采样?本文来讨论这个问题,并分享自己的解决方案。

点击阅读全文...

8 Apr

盘点主流的图像扩散模型作品,我们会发现一个特点:当前多数做高分辨率图像生成(下面简称“大图生成”)的工作,都是先通过Encoder变换到Latent空间进行的(即LDM,Latent Diffusion Model),直接在原始Pixel空间训练的扩散模型,大多数分辨率都不超过64*64,而恰好,LDM通过AutoEncoder变换后的Latent,大小通常也不超过64*64。这就自然引出了一系列问题:扩散模型是不是对于高分辨率生成存在固有困难?能否在Pixel空间直接生成高分辨率图像?

论文《Simple diffusion: End-to-end diffusion for high resolution images》尝试回答了这个问题,它通过“信噪比”分析了大图生成的困难,并以此来优化noise schdule,同时提出只需在最低分辨率feature上对架构进行scale up、多尺度Loss等技巧来保证训练效率和效果,这些改动使得原论文成功在Pixel空间上训练了分辨率高达1024*1024的图像扩散模型。

点击阅读全文...

17 Apr

上一篇文章《生成扩散模型漫谈(二十二):信噪比与大图生成(上)》中,我们介绍了通过对齐低分辨率的信噪比来改进noise schedule,从而改善直接在像素空间训练的高分辨率图像生成(大图生成)的扩散模型效果。而这篇文章的主角同样是信噪比和大图生成,但做到了更加让人惊叹的事情——直接将训练好低分辨率图像的扩散模型用于高分辨率图像生成,不用额外的训练,并且效果和推理成本都媲美直接训练的大图模型!

这个工作出自最近的论文《Upsample Guidance: Scale Up Diffusion Models without Training》,它巧妙地将低分辨率模型上采样作为引导信号,并结合了CNN对纹理细节的平移不变性,成功实现了免训练高分辨率图像生成。

思想探讨

我们知道,扩散模型的训练目标是去噪(Denoise,也是DDPM的第一个D)。按我们的直觉,去噪这个任务应该是分辨率无关的,换句话说,理想情况下低分辨率图像训练的去噪模型应该也能用于高分辨率图像去噪,从而低分辨率的扩散模型应该也能直接用于高分辨率图像生成。

点击阅读全文...

17 Jul

【生活杂记】用电饭锅来煮米汤

前段时间,笔者无意看到了一个“低糖电饭锅”的概念(也叫“低淀粉电饭锅”),开始以为是什么新科技产物,再仔细一看之后才发现,原来就是煮饭的同时沥出一点米汤,米汤中包含了一点淀粉,如果把米汤倒掉,那么就等于少吃了一点淀粉,即所谓的低糖/低淀粉。虽然这种产品看起来就一副智商税的模样(靠这个减糖还不如少吃半口饭),但它却勾起了笔者童年时做饭的回忆,以及对米汤的怀念。

经典柴火灶(来源于网络)

经典柴火灶(来源于网络)

点击阅读全文...

15 Aug

让MathJax更好地兼容谷歌翻译和延时加载

很早之前,就有读者提出希望把Cool Papers上面的数学公式渲染一下,因为很多偏数学的论文,它们的摘要甚至标题上都带有LaTeX代码写的数学公式,如果不把这些公式渲染出来,那么看上去就像是一堆乱码,确实会比较影响阅读体验。然而,之前的测试显示,负责渲染公式的MathJax跟谷歌翻译和延时加载都不大兼容,所以尽管需求存在已久,但笔者一直没有把它加上去。

不过好消息是,经过反复查阅和调试,这两天笔者总算把兼容性问题解决了,所以现在大家看到的Cool Papers已经能够渲染数学公式了。这篇文章总结一下解决方案,供大家参考。

摘要带有公式的论文

摘要带有公式的论文

点击阅读全文...

26 Sep

利用“熄火保护 + 通断器”实现燃气灶智能关火

燃气灶智能化主要有两个方向:一是检测开关火状态,实现跟抽油烟机等其他设备的联动;二是实现智能关火,这包括定时关火以及接入米家(或者其他智能家居)实现语音关火、远程关火等。目前带有这两点功能的燃气灶选择并不多,并且相比普通燃气灶贵不少,单纯为了这两点功能而换一个新燃气灶并不划算,所以就出现了一些将普通燃气灶智能化的的魔改方案。

接入方案示意图

接入方案示意图

本文主要分享基于燃气灶自带的熄火保护装置,利用通断器将燃气灶接入米家,实现智能关火功能。

点击阅读全文...