Muon续集:为什么我们选择尝试Muon?
By 苏剑林 | 2025-02-27 | 29425位读者 | 引用本文解读一下我们最新的技术报告《Muon is Scalable for LLM Training》,里边分享了我们之前在《Muon优化器赏析:从向量到矩阵的本质跨越》介绍过的Muon优化器的一次较大规模的实践,并开源了相应的模型(我们称之为“Moonlight”,目前是一个3B/16B的MoE模型)。我们发现了一个比较惊人的结论:在我们的实验设置下,Muon相比Adam能够达到将近2倍的训练效率。
优化器的工作说多不多,但说少也不少,为什么我们会选择Muon来作为新的尝试方向呢?已经调好超参的Adam优化器,怎么快速切换到Muon上进行尝试呢?模型Scale上去之后,Muon与Adam的性能效果差异如何?接下来将分享我们的思考过程。
初探muP:超参数的跨模型尺度迁移规律
By 苏剑林 | 2025-03-13 | 19352位读者 | 引用众所周知,完整训练一次大型LLM的成本是昂贵的,这就决定了我们不可能直接在大型LLM上反复测试超参数。一个很自然的想法是希望可以在同结构的小模型上仔细搜索超参数,找到最优组合后直接迁移到大模型上。尽管这个想法很朴素,但要实现它并不平凡,它需要我们了解常见的超参数与模型尺度之间的缩放规律,而muP正是这个想法的一个实践。
muP,有时也写μP,全名是Maximal Update Parametrization,出自论文《Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer》,随着LLM训练的普及,它逐渐已经成为了科学炼丹的事实标配之一。
方法大意
在接入主题之前,必须先吐槽一下muP原论文写得实在太过晦涩,并且结论的表达也不够清晰,平白增加了不少理解难度,所以接下来笔者尽量以一种(自认为)简明扼要的方式来复现muP的结论。
高阶muP:更简明但更高明的谱条件缩放
By 苏剑林 | 2025-03-24 | 13409位读者 | 引用在文章《初探muP:超参数的跨模型尺度迁移规律》中,我们基于前向传播、反向传播、损失增量和特征变化的尺度不变性推导了muP(Maximal Update Parametrization)。可能对于部分读者来说,这一过程还是显得有些繁琐,但实际上它比原始论文已经明显简化。要知道,我们是在单篇文章内相对完整地介绍的muP,而muP的论文实际上是作者Tensor Programs系列论文的第5篇!
不过好消息是,作者在后续的研究《A Spectral Condition for Feature Learning》中,发现了一种新的理解方式(下称“谱条件”),它比muP的原始推导和笔者的推导都更加直观和简洁,但却能得到比muP更丰富的结果,可谓muP的高阶版本,简明且不失高明的代表作。
准备工作
顾名思义,谱条件(Spectral Condition)跟谱范数(Spectral Norm)相关,它的出发点是谱范数的一个基本不等式:
‖xW‖2≤‖x‖2‖W‖2
MoE环游记:4、难处应当多投入
By 苏剑林 | 2025-03-28 | 13630位读者 | 引用前两篇文章我们都在讨论负载均衡,其中在《MoE环游记:3、换个思路来分配》介绍Loss-Free方案时,笔者留了一个悬念:它引入的Bias项有一个冗余的自由度,这个自由度可以用来做另外有趣的事情。这篇文章我们就来讨论这件事。
我们知道,MoE是为每个Token只选择最匹配的k个Expert来进行计算,从而在增大参数量的同时还节省了计算量。然而,当我们仔细思考就会发现,这个策略实际上有明显的可改进之处:直观来看,每个Token的难度并不一样,所以更合理的方案应该是难的Token分配更多的计算资源,简单的token分配更少的资源,这样或许能在同样有限的资源下将效果最大化。
而刚才提到的Bias的额外自由度,恰好可以用来简单地实现这个目标。
Transformer升级之路:19、第二类旋转位置编码
By 苏剑林 | 2025-04-18 | 9804位读者 | 引用持续将“Transformer升级之路”系列关注到本篇的读者,想必都已经对旋转位置编码(RoPE)有所了解。简单来说,RoPE是施加在Attention的Query(Q)和Key(K)上的旋转变换,形式上属于绝对位置编码,但结合Attention的内积(Dot-Product)特性,能够自动实现相对位置的效果。
那么,RoPE可以加在Value(V)上吗?看上去不可以,因为对V旋转后就不是相对位置编码了。然而事情并没有那么绝对,本文就来讨论加在V上RoPE,我们可以称之为“第二类旋转位置编码”。
基础回顾
我们将Dot-Product Attention分解为
oi=∑jai,jvj,ai,j=esi,j∑jesi,j,si,j=q⊤ikj
SVD(Singular Value Decomposition,奇异值分解)是常见的矩阵分解算法,相信很多读者都已经对它有所了解,此前我们在《低秩近似之路(二):SVD》也专门介绍过它。然而,读者是否想到,SVD竟然还可以求导呢?笔者刚了解到这一结论时也颇感意外,因为直觉上“分解”往往都是不可导的。但事实是,SVD在一般情况下确实可导,这意味着理论上我们可以将SVD嵌入到模型中,并用基于梯度的优化器来端到端训练。
问题来了,既然SVD可导,那么它的导函数长什么样呢?接下来,我们将参考文献《Differentiating the Singular Value Decomposition》,逐步推导SVD的求导公式。
推导基础
假设W是满秩的n×n矩阵,且全体奇异值两两不等,这是比较容易讨论的情形,后面我们也会讨论哪些条件可以放宽一点。接着,我们设W的SVD为:
W=UΣV⊤
10月国际空间站过境时间
By 苏剑林 | 2009-09-20 | 23464位读者 | 引用进驻中山大学南校区,折腾校园网
By 苏剑林 | 2016-09-05 | 86994位读者 | 引用开始研究僧之旅,希望有一天能企及扫地僧的境界。
进入中山大学后,各种郁闷的事情就来了。首先最郁闷的就是开学时间特早,8月26日开学,感觉至少比一般学校早了一星期,开学这么早有意思么~~接着就是感觉中大的管理制度各种混乱,比我本科的华师差多了。好吧,这些琐事先不吐槽,接下来弄校园网,这是作死的开始。
我们是在南校区的,校园网是通过锐捷客户端来认证的,而我是用macbook的,不过中大这边还很人性化地提供了Mac版的锐捷,体积就1M左右,挺好的。但众所周知,macbook并没有有线网卡,每次我上网都得插着个USB网卡然后连着网线,这该有多郁闷。于是想办法通过路由器拨号。我也不算没经验的了,对openwrt这个系统有过一定研究,以前在本科的时候也是锐捷,可以用mentohust替代拨号,很简单。于是我在这里重复这样的过程,发现一直认证失败,按照网上提示的各种方法,都无法解决。
经过研究,我发现在Windows下,这里就只能用官方提供了锐捷4.90版本,从其他地方下载的更高级或者更低级的锐捷,都无法通过验证。估计就是因为这个机制,导致了mentohust难以通过验证。而且网上流行的mentohust都是基于V2协议的,但4.90是基于V4的。后来我又去下载了V4版本的进行交叉编译,测试发现还不成功。几近绝望的时候,我发现了mentohust-proxy,一个mentohust的改进版,让我找到了希望。(怎么找到它?我是直接到github搜索了,因为实在没辙了~~)
原理很简单,如果直接通过mentohust无法完成认证,那么就通过代理模式,由电脑来完成认证,而mentohust只需要负责发送心跳包维持联网就行。这是个很折中的方案,但应该说是一个很通用的方案,因为它的成功与否,基本就取决于自己电脑的锐捷客户端而已。看到这个方案,我就知道有戏了,于是赶紧补习了一下交叉编译的知识,最后成功编译好了,并且在路由上成功地完成了认证。
最近评论