2011年全国高中数学联赛
By 苏剑林 | 2011-10-23 | 35165位读者 | 引用2012年全年天象大观
By 苏剑林 | 2011-10-23 | 34502位读者 | 引用Astronomy Calendar of Celestial Events
2012年全年天象
翻译自NASA:http://eclipse.gsfc.nasa.gov/SKYCAL/SKYCAL.html
(北京时间)
[欧拉数学]黎曼ζ函数
By 苏剑林 | 2011-11-18 | 50425位读者 | 引用欧拉数学的魅力在于,它运用类比的方法,把各个看似毫无关联的领域联系了起来,生动而巧妙地得出了正确的结果。他对$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...=\frac{\pi^2}{6}$的计算便是一个典型的例子。虽然论证过程未必严谨,但是那“神奇”的推导已经令我们拍案叫绝,而且往往发人深思。这种效果通常是严格论证难以实现的,它不仅给予我们答案,而且还给予了我们启迪:新的思想,新的方向;有时,它还揭示了各个学科之间内在而深刻的联系。下面我们来观察一下数论中的“黎曼ζ函数”和“金钥匙”!
黎曼ζ函数指的是:
$$\xi (s)=\sum_{n=1}^{\infty} \frac{1}{n^s}=\frac{1}{1^s}+\frac{1}{2^s}+\frac{1}{3^s}+\frac{1}{4^s}+...$$
本来s应该是一个实数,但是将复分析引入数论后,将s推广至复数具有更大的研究价值。
[欧拉数学]素数倒数之和
By 苏剑林 | 2011-11-19 | 38007位读者 | 引用上一篇文章我通过欧拉数学的方式简单地讲了数论中的“黎曼ζ函数”和“金钥匙”。事实上,这把“金钥匙”与很多问题之间的联系已经被建立了起来,换句话说,“金钥匙”已经插入到了相应的“锁孔”中,数学家的工作就是要把这个金钥匙“拧动”,继而打开数学之门!
接下来我们看看如何证明所有素数的倒数之和发散的。在入正题之前,我们得需要看一个引理:
无限数列${a_n}$的每一项都大于0,那么$\sum\limits_{n=1}^{\infty} a_n$与$\prod\limits_{n=1}^{\infty} \left(1+a_n\right)$的敛散性相同。换句话说,两者互为充分必要条件!
[欧拉数学]素数定理及加强
By 苏剑林 | 2011-11-19 | 43436位读者 | 引用1798年法国数学家勒让德提出:
$$\pi(n)\sim\frac{n}{\ln n}$$
这个式子被成为“素数定理”(the Prime Number Theorem, PNT)。它表达的是什么意思呢?其中$\pi(N)$指的是不大于N的素数个数,$\frac{N}{\ln N}$是一个计算结果,符号~叫做“渐近趋于”,整个式子意思就是“不大于N的素数个数渐近趋于$\frac{N}{\ln N}$”;简单来讲,就是说$\frac{N}{\ln N}$是$\pi(N)$的一个近似估计。也许有的读者会问为什么不用≈而用~呢?事实上,~包含的意思还有:
$$\lim_{N-\infty} \frac{\pi(N) \ln N}{N}=1$$
今天出发,奔向自招考试...
By 苏剑林 | 2012-02-10 | 32355位读者 | 引用对于教育界来说,在二月自招是一个热门的话题。各个高效的自主招生考试都在二月如火如荼地开始了。前几天山东大学的考试以及复旦大学的“千分考”都已经进行了,明天“北约”和“华约”都将举行它们的自招笔试。BoJone作为去年夏令营营员的一份子,也有机会去参加北大的笔试。
由于明天八点就开始考试了,所以我得提前一天出发。已经看过前几年的题目和一些模拟题,我知道难度还是有的,心情也有些忐忑。毕竟这是一次“小高考”般的考试。但是情绪波动却不会很大。在过去的一两年里,我已经经历了许许多多(尤其是考试),偶尔有一些零碎的成功,但更多的是失败,于我而言,最重要的,是经验、体验。在人生的每一个驿站上,停留,赏景。
其实,真正快乐的不是成绩,而是用心投入到科学中,为自己取得一点点微不足道的成绩而高兴。
没有什么事情是不可挽救的,我欣赏刘欢的《从头再来》:心若在,梦就在,天地之间还有真爱;看成败,人生豪迈,只不过是从头再来...人生值得后悔的事情太多,也太少。
加油!
最近评论