4 May

[问题解答]运煤车的最大路程(更正)

刚刚在浏览卢昌海大师的微博时,发现他微博上有一道比较有趣的题目,于是饶有兴致地思考了一翻,构思了一个答案,希望读者们看看这个答案有问题不?

五一”长假微博很闷,出一道题给博友们解闷:

用重载列车运煤,每次可装1万吨,每行驶1公里耗煤1吨,起点处共有N万吨煤(简单起见N为正整数),请问最远可运至何处(是国营煤老板,成本不计,只要运到的数量大于0就算成功)?并求$N\to\infty$时的渐进形式。

点击阅读全文...

15 Aug

从费马大定理谈起(二):勾股数

费马大定理说的是$n > 2$的情况,但是我们可以从$n=2$出发,求解到勾股数组的一般表达式,并且从中得到证明费马大定理的原始思想。

互质解

我们在实整数,也就是$\mathbb{Z}$内求解。为了求解不定方程$x^2+y^2=z^2$,首先我们注意到,这是一道齐次方程,这告诉我们,如果存在某一组解,那么可以通过同除以公约数的方法,得到一组两两互质的解。换句话说,有解必有互质解,这是$x^n+y^n=z^n$的解的通性。那么,我们假设$(x,y,z)=(a,b,c)$ 是方程$x^2+y^2=z^2$的一个互质解。

点击阅读全文...

22 Jul

初试在Python中使用PARI/GP

BoJone很喜欢Python,也很喜欢数论,所以就喜欢利用Python玩数论了。平时也喜欢自己动手写一些数论函数,毕竟Python支持大整数高精度运算,这点是非常好的;但是,在很多实际应用中,还是希望能有一个现成的数论函数库来调用。之前尝试过数学研发网的HugeCalc库,但是由于各种不熟悉不了了之。后来论坛上的无心老兄推荐了PARI/GP,小试一下,居然在Python上成功调用了。以后再也不用担心Python上的数论计算问题了,呵呵~

点击阅读全文...

1 Sep

从费马大定理谈起(九):n=3

现在可以开始$n=3$的证明了。在实整数范围内n=3的证明看起来相当复杂,而且跟n=4的证明似乎没有相通之处。然而,如果我们在$\mathbb{Z}[\omega]$中考虑$x^3+y^3+z^3=0$无解的证明,就会跟n=4时有很多类似的地方,而且事实上证明比n=4时简单(要注意在实整数范围内的证明,n=4比n=3简单。费马完成了n=4的证明,但是没完成n=3的证明。)。我想,正是这样的类似之处,才让当初还没有完成证明的数学家拉梅就自信他从这条路可以完成费马大定理的证明。(不过,这自信却是失败的案例:拉梅的路不能完全走通,而沿着这条路走得更远的当属库默,但即便这样,库默也没有证明费马大定理。)

证明跟$n=4$的第二个证明是类似的。我们先往方程中添加一个单位数,然后证明无论单位数是什么,方程在$\mathbb{Z}[\omega]$中都无解。这是一个很妙的技巧,让我们证明了更多的方程无解,但是却用到了更少的步骤。事实上,存在着只证明$x^3+y^3+z^3=0$无解的证明,但需要非常仔细地分析里边的单位数情况,这是相当麻烦的。本证明是我参考了Fermats last theorem blogspot上的证明,然后结合本系列n=4的第二个证明,简化而来,主要是减少了对单位数的仔细分析。

点击阅读全文...

10 Oct

从费马大定理谈起(十):x^3+y^3=z^3+w^3

Ramanujan

Ramanujan

在正式开始数学之前,我们不妨先说一个关于印度著名数学天才——拉马努金的轶事。拉马努金病重,哈代前往探望。哈代说:“我乘出租车来,车牌号码是1729,这数真没趣,希望不是不祥之兆。”拉马努金答道:“不,那是个有趣得很的数。可以用两个立方之和来表达而且有两种表达方式的数之中,1729是最小的。”(即$1729 = 1^3+12^3 = 9^3+10^3$,后来这类数称为的士数。)利特尔伍德回应这宗轶闻说:“每个整数都是拉马努金的朋友。”(来自维基百科

从这则轶事中,我们发现,确实存在的某些整数,可以表示为两种不同的立方和,换句话说,不定方程:
$$x^3+y^3=z^3+w^3$$

点击阅读全文...

12 Nov

实数域上有限维可除代数只有四种

今天上近世代数课,老师谈到除环,举了一个非交换的除环的粒子,也就是四元数环,然后谈到“实数域上有限维可除代数只有4种”,也就是实数本身、复数、四元数和八元数(这里的可除代数就是除环)。这句话我听起来有点熟悉,又好像不大对劲。我记得在某本书上看过,定义为实数上的超复数系,如果满足模的积性,那么就只有以上四种。但是老师的那句话表明即使去掉模的积性,也只有四种。我自然以为老师记错了,跟老师辩论了一翻,然后回到宿舍又找资料,最终确定:实数域上有限维可除代数真的只有四种!下面简单谈谈我对这个问题的认识。

当然,这里不可能给出这个命题的证明,因为这个证明相当不简单,笔者目前也没有弄懂,但是粗略感觉一下为什么,还是有可能的。看到这个命题,我们一下子的感觉可能是:怎么会这么少!我们这里通过例子简单说明一下,确实不会多!

我们已经对复数系很熟悉了,也就是定义在实数上的向量空间,基为$\{1,i\}$,并且给定乘法为
$$1\times i=i \times 1=i,\quad 1^2=1,\quad i^2=-1$$

点击阅读全文...

28 Oct

朋友们,来瓶汽水吧!有趣的换汽水问题

————怀念我曾经参加过的小学数学竞赛。

从一道小学竞赛题谈起

笔者小学五年级时参加了第一次数学竞赛,叫“育苗杯”,大多数题目都记不清楚了,唯一记得很清楚的是如下这道题目(不完全相同,意思类似):

假设汽水一块钱一瓶,而且4个空瓶子可以换一瓶汽水喝。如果我有30块钱,我最多可以喝到多少瓶汽水?

来瓶汽水吧

来瓶汽水吧

当然,上面的情况可能太理想了,但是必须承认,类似的案例在生活中大量存在。比如买草龟吃时,草龟壳由于可以入药,所以有人回收龟壳,这也意味着若干个龟壳就可以换一只龟,等等。读者能不能很快就算出来呢?

当然,这道题并不困难,30块钱能买30瓶汽水,然后留下30个空瓶子,这30个空瓶子可以换来7瓶汽水,剩下2个空瓶子;喝完汽水后,剩下9个空瓶子,可以换来2瓶汽水,剩下1个空瓶子;喝完汽水后,剩下3个空瓶子。算算看,这时候我们已经喝了30+7+2=39瓶汽水了。(不考虑撑着啊,也可以分给别人喝^_^)整个过程如下表:
$$\begin{array}{c|cccc}
\hline
\text{空瓶子数} & 30 & 2+7 & 1+2 & ? \\
\hline
\text{已喝汽水数} & 30 & 7 & 2 & ? \\
\hline \end{array}$$

点击阅读全文...

7 Nov

【外微分浅谈】6. 微分几何

终于开始谈到重点了,就是这部分内容促使我学习外微分的。用外微分可以方便地推导微分几何的一些内容,有时候还能方便计算。其主要根源在于:外微分本身在形式上是微分的推广,因此微分几何的东西能够使用外微分来描述并不出奇;然后,最重要的原因是,外微分把$dx^{\mu}$看成一组基,因此相当于在几何中引入了两组基,一组是本身的向量基(用张量的语言,就是逆变向量的基),这组基可以做对称的内积,另外一组基就是$dx^{\mu}$,这组基可以做反对称的外积。因此,当外微分引入几何时,微分几何就拥有了微分、积分、对称积、反对称积等各种“理想装备”,这就是外微分能够加速微分几何推导的主要原因。

标架的运动

前面已经得到
$$\begin{aligned}&\omega^{\mu}=h_{\alpha}^{\mu}dx^{\alpha}\\
&d\boldsymbol{r}=\hat{\boldsymbol{e}}_{\mu} \omega^{\mu}\\
&ds^2 = \eta_{\mu\nu} \omega^{\mu}\omega^{\nu}\\
&\langle \hat{\boldsymbol{e}}_{\mu}, \hat{\boldsymbol{e}}_{\nu}\rangle = \eta_{\mu\nu}\end{aligned} \tag{45} $$

点击阅读全文...