貌离神合的RNN与ODE:花式RNN简介
By 苏剑林 | 2018-06-23 | 101329位读者 | 引用本来笔者已经决心不玩RNN了,但是在上个星期思考时忽然意识到RNN实际上对应了ODE(常微分方程)的数值解法,这为我一直以来想做的事情——用深度学习来解决一些纯数学问题——提供了思路。事实上这是一个颇为有趣和有用的结果,遂介绍一翻。顺便地,本文也涉及到了自己动手编写RNN的内容,所以本文也可以作为编写自定义的RNN层的一个简单教程。
注:本文并非前段时间的热点“神经ODE”的介绍(但有一定的联系)。
RNN基本
什么是RNN?
众所周知,RNN是“循环神经网络(Recurrent Neural Network)”,跟CNN不同,RNN可以说是一类模型的总称,而并非单个模型。简单来讲,只要是输入向量序列$(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_T)$,输出另外一个向量序列$(\boldsymbol{y}_1,\boldsymbol{y}_2,\dots,\boldsymbol{y}_T)$,并且满足如下递归关系
$$\boldsymbol{y}_t=f(\boldsymbol{y}_{t-1}, \boldsymbol{x}_t, t)\tag{1}$$
的模型,都可以称为RNN。也正因为如此,原始的朴素RNN,还有改进的如GRU、LSTM、SRU等模型,我们都称为RNN,因为它们都可以作为上式的一个特例。还有一些看上去与RNN没关的内容,比如前不久介绍的CRF的分母的计算,实际上也是一个简单的RNN。
说白了,RNN其实就是递归计算。
“噪声对比估计”杂谈:曲径通幽之妙
By 苏剑林 | 2018-06-13 | 174111位读者 | 引用说到噪声对比估计,或者“负采样”,大家可能立马就想到了Word2Vec。事实上,它的含义远不止于此,噪音对比估计(NCE, Noise Contrastive Estimation)是一个迂回但却异常精美的技巧,它使得我们在没法直接完成归一化因子(也叫配分函数)的计算时,就能够去估算出概率分布的参数。本文就让我们来欣赏一下NCE的曲径通幽般的美妙。
注:由于出发点不同,本文所介绍的“噪声对比估计”实际上更偏向于所谓的“负采样”技巧,但两者本质上是一样的,在此不作区分。
问题起源
问题的根源是难分难舍的指数概率分布~
指数族分布
在很多问题中都会出现指数族分布,即对于某个变量$\boldsymbol{x}$的概率$p(\boldsymbol{x})$,我们将其写成
$$p(\boldsymbol{x}) = \frac{e^{G(\boldsymbol{x})}}{Z}\tag{1}$$
其中$G(\boldsymbol{x})$是$\boldsymbol{x}$的某个“能量”函数,而$Z=\sum_{\boldsymbol{x}} e^{G(\boldsymbol{x})}$则是归一化常数,也叫配分函数。这种分布也称为“玻尔兹曼分布”。
python简单实现gillespie模拟
By 苏剑林 | 2018-06-07 | 70112位读者 | 引用基于最小熵原理的NLP库:nlp zero
By 苏剑林 | 2018-05-31 | 101959位读者 | 引用陆陆续续写了几篇最小熵原理的博客,致力于无监督做NLP的一些基础工作。为了方便大家实验,把文章中涉及到的一些算法封装为一个库,供有需要的读者测试使用。
由于面向的是无监督NLP场景,而且基本都是NLP任务的基础工作,因此命名为nlp zero。
地址
Github: https://github.com/bojone/nlp-zero
Pypi: https://pypi.org/project/nlp-zero/
可以直接通过
pip install nlp-zero==0.1.6
进行安装。整个库纯Python实现,没有第三方调用,支持Python2.x和3.x。
最小熵原理(三):“飞象过河”之句模版和语言结构
By 苏剑林 | 2018-05-30 | 59118位读者 | 引用在前一文《最小熵原理(二):“当机立断”之词库构建》中,我们以最小熵原理为出发点进行了一系列的数学推导,最终得到$(2.15)$和$(2.17)$式,它告诉我们两个互信息比较大的元素我们应该将它们合并起来,这有利于降低“学习难度”。于是利用这一原理,我们通过邻字互信息来实现了词库的无监督生成。
由字到词、由词到词组,考察的是相邻的元素能不能合并成一个好“套路”。可是套路为什么非得要相邻的呢?当然不一定相邻,我们学习语言的时候,不仅仅会学习到词语、词组,还要学习到“固定搭配”,也就是说词语怎么运用才是合理的,这是语法的体现,是本文所要探究的,希望最终能达到一定的无监督句法分析的效果。
由于这次我们考虑的是跨邻词的语言关联,因此我给它起个名字为“飞象过河”,正是
“套路宝典”第二式——“飞象过河”
语言结构
对于大多数人来说,并不会真正知道什么是语法,他们脑海里就只有一些“固定搭配”、“定式”,或者更正式一点可以叫“模版”。大多数情况下,我们是根据模版来说出合理的话来。而不同的人的说话模版可能有所不同,这就是个人的说话风格,甚至是“口头禅”。
厨房,菜市场,其实都是武林
By 苏剑林 | 2018-05-21 | 39605位读者 | 引用简明条件随机场CRF介绍(附带纯Keras实现)
By 苏剑林 | 2018-05-18 | 324364位读者 | 引用笔者去年曾写过博文《果壳中的条件随机场(CRF In A Nutshell)》,以一种比较粗糙的方式介绍了一下条件随机场(CRF)模型。然而那篇文章显然有很多不足的地方,比如介绍不够清晰,也不够完整,还没有实现,在这里我们重提这个模型,将相关内容补充完成。
本文是对CRF基本原理的一个简明的介绍。当然,“简明”是相对而言中,要想真的弄清楚CRF,免不了要提及一些公式,如果只关心调用的读者,可以直接移到文末。
图示
按照之前的思路,我们依旧来对比一下普通的逐帧softmax和CRF的异同。
逐帧softmax
CRF主要用于序列标注问题,可以简单理解为是给序列中的每一帧都进行分类,既然是分类,很自然想到将这个序列用CNN或者RNN进行编码后,接一个全连接层用softmax激活,如下图所示
最近评论