26 Dec

小论文《欧拉数学在数列级数的妙用》

这是我的数学分析期末小论文,是之前的文章《[欧拉数学]找出严谨的答案》的补充与完善,也是我自己的Latex写作练习。文章举了一些例子来说明通过离散数学连续化为离散命题的证明带来思路。

----------------------

通常我们都认为具体的级数是比较容易分析的,而抽象级数则比较难把握思路。抽象级数题目的种类太多,为了熟练解题通常都需要记忆很多形式,而且这些形式通常都很单一,缺乏可拓展性。而运用“欧拉数学”,可以为我们解决数项级数题提供一个独特的、实用性广的思路。

点击阅读全文...

9 Sep

[欧拉数学]找出严谨的答案

在之前的一些文章中,我们已经谈到过欧拉数学。总体上来讲,欧拉数学就是具有创造性的、直觉性的技巧和方法,这些方法能够推导出一些漂亮的结果,而方法本身却并不严密。然而,在很多情况下,严密与直觉只是一步之遥。接下来要介绍的是我上学期《数学分析》期末考的一道试题,而我解答这道题的灵感来源便是“欧拉数学”。

数列${a_n}$是递增的正数列,求证:$\sum\limits_{n=1}^{\infty}\left(1-\frac{a_n}{a_{n+1}}\right)$收敛等价于${a_n}$收敛。

据说参考答案给出的方法是利用数列的柯西收敛准则,我也没有仔细去看,我在探索自己的更富有直觉型的方法。这就是所谓的“I do not understand what I can not create.”。下面是我的思路。

点击阅读全文...