生成扩散模型漫谈(三十一):预测数据而非噪声
By 苏剑林 | 2025-11-24 | 12401位读者 | 引用时至今日,LDM(Latent Diffusion Models)依旧是扩散模型的主流范式。借助Encoder对原始图像进行高倍压缩,LDM能显著减少训练与推理的计算成本,同时还能降低训难度,可谓一举多得。然而,高倍压缩也意味着信息损失,而且“压缩、生成、解压缩”的流水线也少了些端到端的美感。因此,始终有一部分人执着于“回到像素空间”,希望让扩散模型直接在原始数据上完成生成。
本文要介绍的《Back to Basics: Let Denoising Generative Models Denoise》正是这一思路的新工作,它基于原始数据往往处于低维子流形这一事实,提出模型应预测数据而不是噪声,由此得到“JiT(Just image Transformers)”,显著地简化了像素空间的扩散模型架构。
信噪之比
毋庸置疑,当今扩散模型的“主力军”依然是LDM,即便是前段时间颇为热闹的RAE,也只是声称LDM的Encoder已经“过时”了,要给它换一个新的更强的Encoder,但依然没改变“先压缩后生成”这一模式。
生成扩散模型漫谈(三十):从瞬时速度到平均速度
By 苏剑林 | 2025-05-26 | 74319位读者 | 引用众所周知,生成速度慢是扩散模型一直以来的痛点,而为了解决这个问题,大家可谓“八仙过海,各显神通”,提出了各式各样的解决方案,然而长久以来并没一项工作能够脱颖而出,成为标配。什么样的工作能够达到这个标准呢?在笔者看来,它至少满足几个条件:
1、数学原理清晰,能够揭示出快速生成的本质所在;
2、能够单目标从零训练,不需要对抗、蒸馏等额外手段;
3、单步生成接近SOTA,可以通过增加步数提升效果。
根据笔者的阅读经历,几乎没有一项工作能同时满足这三个标准。然而,就在几天前,arXiv出了一篇《Mean Flows for One-step Generative Modeling》(简称“MeanFlow”),看上去非常有潜力。接下来,我们将以此为契机,讨论一下相关思路和进展。
生成扩散模型漫谈(二十九):用DDPM来离散编码
By 苏剑林 | 2025-02-14 | 63131位读者 | 引用笔者前两天在arXiv刷到了一篇新论文《Compressed Image Generation with Denoising Diffusion Codebook Models》,实在为作者的天马行空所叹服,忍不住来跟大家分享一番。
如本文标题所述,作者提出了一个叫DDCM(Denoising Diffusion Codebook Models)的脑洞,它把DDPM的噪声采样限制在一个有限的集合上,然后就可以实现一些很奇妙的效果,比如像VQVAE一样将样本编码为离散的ID序列并重构回来。注意这些操作都是在预训练好的DDPM上进行的,无需额外的训练。
有限集合
由于DDCM只需要用到一个预训练好的DDPM模型来执行采样,所以这里我们就不重复介绍DDPM的模型细节了,对DDPM还不大了解的读者可以回顾我们《生成扩散模型漫谈》系列的(一)、(二)、(三)篇。
生成扩散模型漫谈(二十八):分步理解一致性模型
By 苏剑林 | 2024-12-18 | 63622位读者 | 引用书接上文,在《生成扩散模型漫谈(二十七):将步长作为条件输入》中,我们介绍了加速采样的Shortcut模型,其对比的模型之一就是“一致性模型(Consistency Models)”。事实上,早在《生成扩散模型漫谈(十七):构建ODE的一般步骤(下)》介绍ReFlow时,就有读者提到了一致性模型,但笔者总感觉它更像是实践上的Trick,理论方面略显单薄,所以兴趣寥寥。
不过,既然我们开始关注扩散模型加速采样方面的进展,那么一致性模型就是一个绕不开的工作。因此,趁着这个机会,笔者在这里分享一下自己对一致性模型的理解。
熟悉配方
还是熟悉的配方,我们的出发点依旧是ReFlow,因为它大概是ODE式扩散最简单的理解方式。设$\boldsymbol{x}_0\sim p_0(\boldsymbol{x}_0)$是目标分布的真实样本,$\boldsymbol{x}_1\sim p_1(\boldsymbol{x}_1)$是先验分布的随机噪声,$\boldsymbol{x}_t = (1-t)\boldsymbol{x}_0 + t\boldsymbol{x}_1$是加噪样本,那么ReFlow的训练目标是:
生成扩散模型漫谈(二十七):将步长作为条件输入
By 苏剑林 | 2024-12-15 | 61631位读者 | 引用这篇文章我们再次聚焦于扩散模型的采样加速。众所周知,扩散模型的采样加速主要有两种思路,一是开发更高效的求解器,二是事后蒸馏。然而,据笔者观察,除了上两篇文章介绍过的SiD外,这两种方案都鲜有能将生成步数降低到一步的结果。虽然SiD能做到单步生成,但它需要额外的蒸馏成本,并且蒸馏过程中用到了类似GAN的交替训练过程,总让人感觉差点意思。
本文要介绍的是《One Step Diffusion via Shortcut Models》,其突破性思想是将生成步长也作为扩散模型的条件输入,然后往训练目标中加入了一个直观的正则项,这样就能直接稳定训练出可以单步生成模型,可谓简单有效的经典之作。
ODE扩散
原论文的结论是基于ODE式扩散模型的,而对于ODE式扩散的理论基础,我们在本系列的(六)、(十二)、(十四)、(十五)、(十七)等博客中已经多次介绍,其中最简单的一种理解方式大概是(十七)中的ReFlow视角,下面我们简单重复一下。
生成扩散模型漫谈(二十六):基于恒等式的蒸馏(下)
By 苏剑林 | 2024-11-22 | 43711位读者 | 引用继续回到我们的扩散系列。在《生成扩散模型漫谈(二十五):基于恒等式的蒸馏(上)》中,我们介绍了SiD(Score identity Distillation),这是一种不需要真实数据、也不需要从教师模型采样的扩散模型蒸馏方案,其形式类似GAN,但有着比GAN更好的训练稳定性。
SiD的核心是通过恒等变换来为学生模型构建更好的损失函数,这一点是开创性的,同时也遗留了一些问题。比如,SiD对损失函数的恒等变换是不完全的,如果完全变换会如何?如何从理论上解释SiD引入的$\lambda$的必要性?上个月放出的《Flow Generator Matching》(简称FGM)成功从更本质的梯度角度解释了$\lambda=0.5$的选择,而受到FGM启发,笔者则进一步发现了$\lambda = 1$的一种解释。
接下来我们将详细介绍SiD的上述理论进展。
通向最优分布之路:概率空间的最小化
By 苏剑林 | 2024-08-06 | 34615位读者 | 引用当要求函数的最小值时,我们通常会先求导函数然后寻找其零点,比较幸运的情况下,这些零点之一正好是原函数的最小值点。如果是向量函数,则将导数改为梯度并求其零点。当梯度零点不易求得时,我们可以使用梯度下降来逐渐逼近最小值点。
以上这些都是无约束优化的基础结果,相信不少读者都有所了解。然而,本文的主题是概率空间中的优化,即目标函数的输入是一个概率分布,这类目标的优化更为复杂,因为它的搜索空间不再是无约束的,如果我们依旧去求解梯度零点或者执行梯度下降,所得结果未必能保证是一个概率分布。因此,我们需要寻找一种新的分析和计算方法,以确保优化结果能够符合概率分布的特性。
对此,笔者一直以来也感到颇为头疼,所以近来决定”痛定思痛“,针对概率分布的优化问题系统学习了一番,最后将学习所得整理在此,供大家参考。
“闭门造车”之多模态思路浅谈(二):自回归
By 苏剑林 | 2024-07-08 | 150144位读者 | 引用这篇文章我们继续来闭门造车,分享一下笔者最近对多模态学习的一些新理解。
在前文《“闭门造车”之多模态思路浅谈(一):无损输入》中,我们强调了无损输入对于理想的多模型模态的重要性。如果这个观点成立,那么当前基于VQ-VAE、VQ-GAN等将图像离散化的主流思路就存在能力瓶颈,因为只需要简单计算一下信息熵就可以表明离散化必然会有严重的信息损失,所以更有前景或者说更长远的方案应该是输入连续型特征,比如直接将图像的原始像素特征Patchify后输入到模型中。
然而,连续型输入对于图像理解自然简单,但对图像生成来说则引入了额外的困难,因为非离散化无法直接套用文本的自回归框架,多少都要加入一些新内容如扩散,这就引出了本文的主题——如何进行多模态的自回归学习与生成。当然,非离散化只是表面的困难,更艰巨的部份还在后头...
无损含义
首先我们再来明确一下无损的含义。无损并不是指整个计算过程中一丁点损失都不能有,这不现实,也不符合我们所理解的深度学习的要义——在2015年的文章《闲聊:神经网络与深度学习》我们就提到过,深度学习成功的关键是信息损失。所以,这里无损的含义很简单,单纯是希望作为模型的输入来说尽可能无损。








最近评论