一阶偏微分方程的特征线法
By 苏剑林 | 2017-12-07 | 83448位读者 | 引用本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。
拟线性情形
一般步骤
考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。
从loss的硬截断、软化到focal loss
By 苏剑林 | 2017-12-25 | 200869位读者 | 引用前言
今天在QQ群里的讨论中看到了focal loss,经搜索它是Kaiming大神团队在他们的论文《Focal Loss for Dense Object Detection》提出来的损失函数,利用它改善了图像物体检测的效果。不过我很少做图像任务,不怎么关心图像方面的应用。本质上讲,focal loss就是一个解决分类问题中类别不平衡、分类难度差异的一个loss,总之这个工作一片好评就是了。大家还可以看知乎的讨论:
《如何评价kaiming的Focal Loss for Dense Object Detection?》
看到这个loss,开始感觉很神奇,感觉大有用途。因为在NLP中,也存在大量的类别不平衡的任务。最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。我尝试把它用在我的基于序列标注的问答模型中,也有微小提升。嗯,这的确是一个好loss。
接着我再仔细对比了一下,我发现这个loss跟我昨晚构思的一个loss具有异曲同工之理!这就促使我写这篇博文了。我将从我自己的思考角度出发,来分析这个问题,最后得到focal loss,也给出我昨晚得到的类似的loss。
朋友们,来瓶汽水吧!有趣的换汽水问题
By 苏剑林 | 2015-10-28 | 33948位读者 | 引用————怀念我曾经参加过的小学数学竞赛。
从一道小学竞赛题谈起
笔者小学五年级时参加了第一次数学竞赛,叫“育苗杯”,大多数题目都记不清楚了,唯一记得很清楚的是如下这道题目(不完全相同,意思类似):
假设汽水一块钱一瓶,而且4个空瓶子可以换一瓶汽水喝。如果我有30块钱,我最多可以喝到多少瓶汽水?
当然,这道题并不困难,30块钱能买30瓶汽水,然后留下30个空瓶子,这30个空瓶子可以换来7瓶汽水,剩下2个空瓶子;喝完汽水后,剩下9个空瓶子,可以换来2瓶汽水,剩下1个空瓶子;喝完汽水后,剩下3个空瓶子。算算看,这时候我们已经喝了30+7+2=39瓶汽水了。(不考虑撑着啊,也可以分给别人喝^_^)整个过程如下表:
$$\begin{array}{c|cccc}
\hline
\text{空瓶子数} & 30 & 2+7 & 1+2 & ? \\
\hline
\text{已喝汽水数} & 30 & 7 & 2 & ? \\
\hline \end{array}$$
《量子力学与路径积分》习题解答V0.3
By 苏剑林 | 2015-11-18 | 18641位读者 | 引用新的《量子力学与路径积分》习题解答又放出来啦。与前两个版本不同的是,前两次更新,每次基本上完成了两章的习题,而这一次,只是增加了第6章的22道习题(第6章共有29道)。原因很多,各种忙就不说啦,主要是第6章开始,各种题目开始复杂起来,计算量也增大,虽然笔者是数学系的,可是还是前进得艰难。还有,第4、5两章加起来也只是25道习题,第6章却有29题,因此,本次更新的工作量,远远大于前两次更新的工作量。
为什么只有22题?当然是没有做完啦。为什么没有做完就更新啦?因为笔者觉得右面的题目,跟第7章的联系更为密切,因此,怕读者等不及,所以剩下的题目,跟第7章一起再发吧。
此外,我是看着中文版来做题的,中文版的翻译质量还不错,但是细微之处却有些不妥当,所以笔者要来回参考中英文版,颇累。读者可以发现,这一版中,“勘误”增加了不少。
运动相机测试:家乡的星空
By 苏剑林 | 2016-08-03 | 39145位读者 | 引用记得很早之前就想尝试一下拍星空,无奈一直都没有设备。以前只知道单反可以拍星空,因此,一直以来的想法就是有钱了就去买台单反。因为各种原因一拖再拖,最后慢慢觉得,对于我这种三分钟热度的人来说,单反的意义还真的不是很大。
这两年,在小米的鼓吹下,小蚁运动相机在国内算是慢慢掀起了一股运动相机潮。这种相机的特点是小巧、灵活,价格也不贵(相比单反)。灵活不仅仅是说它便于携带,而且还是功能上的灵活,比如一代小蚁还支持编程拍摄!(写程序控制快门、ISO、拍摄间隔,并实现定时拍摄等)这样当然很快就吸引了我,在小蚁2代众筹之时,我也咬咬牙,入了一台。
前两天回到家,刚好晴夜,马上就试了一下拍星空的效果。下面是在我家楼顶拍的,用ISO400曝光30秒的效果:
最近一直在考虑一些自然语言处理问题和一些非线性分析问题,无暇总结发文,在此表示抱歉。本文要说的是对于一阶非线性差分方程(当然高阶也可以类似地做)的一种摄动格式,理论上来说,本方法可以得到任意一阶非线性差分方程的显式渐近解。
非线性差分方程
对于一般的一阶非线性差分方程
$$\begin{equation}\label{chafenfangcheng}x_{n+1}-x_n = f(x_n)\end{equation}$$
通常来说,差分方程很少有解析解,因此要通过渐近分析等手段来分析非线性差分方程的性质。很多时候,我们首先会考虑将差分替换为求导,得到微分方程
$$\begin{equation}\label{weifenfangcheng}\frac{dx}{dn}=f(x)\end{equation}$$
作为差分方程$\eqref{chafenfangcheng}$的近似。其中的原因,除了微分方程有比较简单的显式解之外,另一重要原因是微分方程$\eqref{weifenfangcheng}$近似保留了差分方程$\eqref{chafenfangcheng}$的一些比较重要的性质,如渐近性。例如,考虑离散的阻滞增长模型:
$$\begin{equation}\label{zuzhizengzhang}x_{n+1}=(1+\alpha)x_n -\beta x_n^2\end{equation}$$
对应的微分方程为(差分替换为求导):
$$\begin{equation}\frac{dx}{dn}=\alpha x -\beta x^2\end{equation}$$
此方程解得
$$\begin{equation}x_n = \frac{\alpha}{\beta+c e^{-\alpha n}}\end{equation}$$
其中$c$是任意常数。上述结果已经大概给出了原差分方程$\eqref{zuzhizengzhang}$的解的变化趋势,并且成功给出了最终的渐近极限$x_n \to \frac{\alpha}{\beta}$。下图是当$\alpha=\beta=1$且$c=1$(即$x_0=\frac{1}{2}$)时,微分方程的解与差分方程的解的值比较。
现在的问题是,既然微分方程的解可以作为一个形态良好的近似解了,那么是否可以在微分方程的解的基础上,进一步加入修正项提高精度?
“熵”不起:从熵、最大熵原理到最大熵模型(一)
By 苏剑林 | 2015-12-01 | 84644位读者 | 引用熵的概念
作为一名物理爱好者,我一直对统计力学中“熵”这个概念感到神秘和好奇。因此,当我接触数据科学的时候,我也对最大熵模型产生了浓厚的兴趣。
熵是什么?在通俗的介绍中,熵一般有两种解释:(1)熵是不确定性的度量;(2)熵是信息的度量。看上去说的不是一回事,其实它们说的就是同一个意思。首先,熵是不确定性的度量,它衡量着我们对某个事物的“无知程度”。熵为什么又是信息的度量呢?既然熵代表了我们对事物的无知,那么当我们从“无知”到“完全认识”这个过程中,就会获得一定的信息量,我们开始越无知,那么到达“完全认识”时,获得的信息量就越大,因此,作为不确定性的度量的熵,也可以看作是信息的度量,说准确点,是我们能从中获得的最大的信息量。
最近评论