历史上的谜案——刘徽有没有使用外推法?
By 苏剑林 | 2011-03-12 | 30946位读者 | 引用话说当年我国古代数学家刘徽创立“割圆术”计算圆周率的事迹,在今天已被不少学生知晓;虽不能说家喻户晓,但是也为各教科书以及老师津津乐道。和古希腊的“数学之神”阿基米德同出一辙,刘徽也是使用圆的内接、外切正多边形来逼近圆形的;不一样的是,刘徽使用的方法是计算半径为1的圆的内接、外切正多边形的面积,而阿基米德计算的则是直径为1的圆的内接、外切正多边形的周长。两者的计算效果有什么区别呢?其实阿基米德的方法应该更快一点,阿基米德算到正n边形所得到的值,相当于刘徽算到正2n边形了。
在此我们不再对两者的计算方法进行区分,因为两者的本质都是一样的。按照现代数学的写法,“割圆术”的理论依据是
$$lim_{n\to \infty} n \sin(\frac{\pi}{n})=\pi\tag{1}$$
当然,刘徽不可能有现代计算正弦函数值的公式(现在计算正弦函数值一般用泰勒级数展开,而泰勒级数展开需要用到$\pi$的值),甚至在他那个时代就连笔墨也没有,据我所知即使是后来的祖冲之推算圆周率时,唯一的计算工具也只是现在称为“算筹”的小棍。不过刘徽还是凭借着超强的毅力,利用递推的方法逐步求圆周率。
《教材如何写》:我们需要怎样的数学教育?
By 苏剑林 | 2011-04-16 | 70719位读者 | 引用转载自:matrix67.com
注:这篇文章里有很多个人观点,带有极强的主观色彩。其中一些思想不见得是正确的,有一些话也是我没有资格说的。我只是想和大家分享一下自己的一些想法。大家记得保留自己的见解。也请大家转载时保留这段话。
我不是一个数学家。我甚至连数学专业的人都不是。我是一个纯粹打酱油的数学爱好者,只是比一般的爱好者更加执着,更加疯狂罢了。初中、高中一路保送,大学不在数学专业,这让我可以不以考试为目的地学习自己感兴趣的数学知识,让我对数学有如此浓厚的兴趣。从 05 年建立这个 Blog 以来,每看到一个惊人的结论或者美妙的证明,我再忙都会花时间把它记录下来,生怕自己忘掉。不过,我深知,这些令人拍案叫绝的雕虫小技其实根本谈不上数学之美,数学真正博大精深的思想我恐怕还不曾有半点体会。
我多次跟人说起,我的人生理想就是,希望有一天能学完数学中的各个分支,然后站在一个至高点,俯瞰整个数学领域,真正体会到数学之美。但是,想要实现这一点是很困难的。最大的困难就是缺少一个学习数学的途径。看课本?这就是我今天想说的——课本极其不靠谱。
有理直角三角形的面积能否为整数?
By 苏剑林 | 2011-08-21 | 39000位读者 | 引用这是一个古老而有趣的问题,但在引入这个问题之前,我们首先来看一个简单的问题:
整数边直角三角形的面积能否为一个完全平方数?
答案是不能。我们可以举一些例子来检验一下,例如边长为3,4,5的直角三角形面积为6,6不是一个平方数;再如边长为5,12,13的直角三角形面积为30,30也不是一个平方数...当然,数学的最近目的是要求严格证明,而不是简单举例,否则就只得称为不完全归纳,这样得出来的是一个猜想,而不是“定理”,就好象著名的“哥德巴赫猜想”...本文我们将试图证明这个命题。
我们稍后还会发现,这个问题和以下问题是等价的:
是否存在一个面积为1的三边长都是有理数的直角三角形?
更让人意外的是,这个问题也等价于方程$x^4+y^4=z^4$并没有整数解,换句话说,我们要证明n=4时的“费马大定理”!
[欧拉数学]素数定理及加强
By 苏剑林 | 2011-11-19 | 45092位读者 | 引用1798年法国数学家勒让德提出:
$$\pi(n)\sim\frac{n}{\ln n}$$
这个式子被成为“素数定理”(the Prime Number Theorem, PNT)。它表达的是什么意思呢?其中$\pi(N)$指的是不大于N的素数个数,$\frac{N}{\ln N}$是一个计算结果,符号~叫做“渐近趋于”,整个式子意思就是“不大于N的素数个数渐近趋于$\frac{N}{\ln N}$”;简单来讲,就是说$\frac{N}{\ln N}$是$\pi(N)$的一个近似估计。也许有的读者会问为什么不用≈而用~呢?事实上,~包含的意思还有:
$$\lim_{N-\infty} \frac{\pi(N) \ln N}{N}=1$$
混沌的世界——“星之轨迹”的研究
By 苏剑林 | 2012-01-13 | 39979位读者 | 引用(本文已被刊登在2012年1月的《天文爱好者》上,于笔者而言这是一份很棒的新年礼物!)
在去年第七期《天爱》上,我们看到了N体问题所呈现出来的一些对称、漂亮的周期轨道,这体现了N体问题和谐有序的一面。但是这仅仅是N体问题的冰山一角,笔者也提到过N体问题的本质是混沌、无序的,通俗来讲就是非常乱,无法用数学方程来精确描述。这看起来是一种不完美。但试想,探索当初伽利略将望远镜对准月球后,看到的是如想象中光滑的月面,那么他还会惊叹宇宙的神奇吗?
本文就让我们来更深入地了解一下N体问题的研究历史。
观测&拟合时代
由于人类的自我优越感以及日月星辰东升西落的经验,让我们长期都认为地球是宇宙的中心。第一个比较系统提出地心说的人当属天文学家欧多克斯(Eudoxus,死于公元前347年左右),但他的地心说是非常粗糙的,以至于无法解释很多基本现象,如无法准确预言日食和解释行星逆行等。但亚里士多德接受了地心说,并且由于他在政治和科学上的权威,使地心说免去了夭折的命运。后来托勒密通过他的本轮,完善了地心说,使之延续到了16世纪。
相对论、对称和第四维
By 苏剑林 | 2012-05-01 | 82209位读者 | 引用这篇文章其实在年初就完成了。
众所周知,我们生活在一个平坦的世界中。正如我们能够感受到的那样,在这个被称为“欧几里得平直空间”的世界里,空间里两点间的最短曲线是两点间的直线段,空间里的任意直角三角形都满足勾股定理,每个物体都有着自己的长、宽、高,它们都随着时间的流逝而运动着。这种世界观把时间独立于空间之外,作为一个独特的研究对象。但是自爱因斯坦在1905年发表狭义相对论以来,我们的宇宙就被描述成为了由三维空间和一维时间组成的“四维时空”,在这里,时间和空间的地位是等价的。不少同好们也许会感到非常困惑:即使证明了时间与空间的确存在着某种联系,也不必要把时间描述成是世界的一维吧?在我们的感官里,时间明明就和空间的三维差别甚大,时间和空间怎么能够等同起来呢?其实答案很简单:为了美。把时间看成与空间等价的一维之后,整个力学体系体现出一种前所未有的对称美,这种美不仅让人赏心悦目,而且极大地方便了我们进一步处理问题。
对称
【翻译】庆祝希格斯玻色子的最终发现!
By 苏剑林 | 2012-07-18 | 29660位读者 | 引用站长注:这篇文章来源于网络,原文是繁体中文版本,我经过修改整理而成。它原来是《费曼的6堂Easy物理课》这本书的解说,但是由于内容上的详细和扼要,我更愿意把它当做物理学家费曼的解说,与大家分享。
伟哉!费曼
社会上普遍有种错误的想法,总以为科学是完全客观的,不但不会因人而异,更不会感情用事。对比之下,科学以外的各种人类活动,则多多少少会受到一般潮流动向、突发的时尚风潮,以及当事人的性格、偏好所左右。唯有科学,得受制于科学社群都同意的规则、步骤,与严密的测试、检验。科学仅着重于得到的结论,而不在乎谁是做研究、做实验的人。
以上说法显然是无稽之谈,科学既然靠人推动,就跟其他人类活动相同,都会受到大环境趋势及个人意念的影响。在科学领域,研究潮流的趋向受到主题素材选择的影响并不大,却相当取决于当时科学家对整个世界的看法。
最近评论