《自然极值》系列——7.悬链线问题
By 苏剑林 | 2010-12-26 | 74894位读者 | 引用约翰与他同时代的110位学者有通信联系,进行学术讨论的信件约有2500封,其中许多已成为珍贵的科学史文献,例如同他的哥哥雅各布以及莱布尼茨、惠更斯等人关于悬链线、最速降线(即旋轮线)和等周问题的通信讨论,虽然相互争论不断,特别是约翰和雅各布互相指责过于尖刻,使兄弟之间时常造成不快,但争论无疑会促进科学的发展,最速降线问题就导致了变分法的诞生。
有意思的是,1690年约翰·伯努利的哥哥雅可比·伯努利曾提出过悬链线问题向数学界征求答案。即:
固定项链的两端,在重力场中让它自然垂下,求项链的曲线方程.
吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,电杆间的电线都是悬链线。伽利略最早注意到悬链线,猜测悬链线是抛物线。1691年莱布尼兹、惠更斯以及约翰·伯努利各自得到正确答案,所用方法是诞生不久的微积分。
《自然极值》系列——8.极值分析
By 苏剑林 | 2010-12-26 | 47226位读者 | 引用本篇文章是《自然极值》系列最后一篇文章,估计也是2010年最后一篇文章了。在这个美好的2010年,想必大家一定收获匪浅,BoJone也在2010年成长了很多。在2010年的尾声,BoJone和科学空间都祝大家在新的一年里更加开心快乐,在科学的道路上更快速地前行。
在本文,BoJone将与大家讨论求极值的最基本原理。这一探讨思路受到了天才的费恩曼所著《费恩曼物理讲义》的启迪。我们分别对函数求极值(求导)和泛函数极值(变分)进行一些简略的分析。
一、函数求极值
对于一个函数$y=f(x)$,设想它在$x=x_0$处取到最大值,那么显然对于很小的增量$\Delta x$,有
$$f(x_0+\Delta x) \leq f(x_0)\tag{3}$$根据泰勒级数,我们有
$f(x_0+\Delta x)=f(x_0)+f'(x_0)\Delta x$————(4)
今天出发,奔向自招考试...
By 苏剑林 | 2012-02-10 | 33462位读者 | 引用对于教育界来说,在二月自招是一个热门的话题。各个高效的自主招生考试都在二月如火如荼地开始了。前几天山东大学的考试以及复旦大学的“千分考”都已经进行了,明天“北约”和“华约”都将举行它们的自招笔试。BoJone作为去年夏令营营员的一份子,也有机会去参加北大的笔试。
由于明天八点就开始考试了,所以我得提前一天出发。已经看过前几年的题目和一些模拟题,我知道难度还是有的,心情也有些忐忑。毕竟这是一次“小高考”般的考试。但是情绪波动却不会很大。在过去的一两年里,我已经经历了许许多多(尤其是考试),偶尔有一些零碎的成功,但更多的是失败,于我而言,最重要的,是经验、体验。在人生的每一个驿站上,停留,赏景。
其实,真正快乐的不是成绩,而是用心投入到科学中,为自己取得一点点微不足道的成绩而高兴。
没有什么事情是不可挽救的,我欣赏刘欢的《从头再来》:心若在,梦就在,天地之间还有真爱;看成败,人生豪迈,只不过是从头再来...人生值得后悔的事情太多,也太少。
加油!
2012北约自主招生数学
By 苏剑林 | 2012-02-12 | 43759位读者 | 引用我的自主招生成绩公布了
By 苏剑林 | 2012-03-04 | 40714位读者 | 引用你见过正方形轮子的自行车吗?一般认为,只有圆形的车轮才能使我们的车子平稳向前移动,但这只是针对平直道路而言的。谁规定路一定是平的?只要铺好一条适当的道路,正方形车轮的自行车照样可以平稳前行!本文就让我们为方轮自行车铺一条路。
其实,方轮自行车已经不是新鲜玩意了,它早已出现在不少科技馆中。从图片中可以看到,它的特殊轨道是有许多段弧组成的,每一段弧的长度等于正方形的边长。车轮前行时,正方形会保持与弧形相切(确保不会打滑)。这样的路的形状是什么曲线呢?很幸运,它并不十分复杂,而且让人意外的是,它就是我们之前已经研究过的“悬链线”!原来,要设计这样的一个曲线的轨道,不需要多么高深的设计师,只需要我们手拿一条铁链,让它自由垂下......
最近评论