15 Dec

书接上文,在《生成扩散模型漫谈(十三):从万有引力到扩散模型》中,我们介绍了一个由万有引力启发的、几何意义非常清晰的ODE式生成扩散模型。有的读者看了之后就疑问:似乎“万有引力”并不是唯一的选择,其他形式的力是否可以由同样的物理绘景构建扩散模型?另一方面,该模型在物理上确实很直观,但还欠缺从数学上证明最后确实能学习到数据分布。

本文就尝试从数学角度比较精确地回答“什么样的力场适合构建ODE式生成扩散模型”这个问题。

基础结论

要回答这个问题,需要用到在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中我们推导过的一个关于常微分方程对应的分布变化的结论。

考虑$\boldsymbol{x}_t\in\mathbb{R}^d, t\in[0,T]$的一阶(常)微分方程(组)
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}

点击阅读全文...

28 Dec

Transformer升级之路:6、旋转位置编码的完备性分析

在去年的文章《Transformer升级之路:2、博采众长的旋转式位置编码》中,笔者提出了旋转位置编码(RoPE),当时的出发点只是觉得用绝对位置来实现相对位置是一件“很好玩的事情”,并没料到其实际效果还相当不错,并为大家所接受,不得不说这真是一个意外之喜。后来,在《Transformer升级之路:4、二维位置的旋转式位置编码》中,笔者讨论了二维形式的RoPE,并研究了用矩阵指数表示的RoPE的一般解。

既然有了一般解,那么自然就会引出一个问题:我们常用的RoPE,只是一个以二维旋转矩阵为基本单元的分块对角矩阵,如果换成一般解,理论上效果会不会更好呢?本文就来回答这个问题。

指数通解

《Transformer升级之路:4、二维位置的旋转式位置编码》中,我们将RoPE抽象地定义为任意满足下式的方阵
\begin{equation}\boldsymbol{\mathcal{R}}_m^{\top}\boldsymbol{\mathcal{R}}_n=\boldsymbol{\mathcal{R}}_{n-m}\label{eq:re}\end{equation}

点击阅读全文...

4 Jan

智能家居之热水器零冷水技术原理浅析

如果家庭使用单一的热水器集中供热水,那么当我们想要用热水时,往往需要先放一段时间的冷水,而如果放冷水时间比较长的话,就会比较影响体验。所谓零冷水,实际上就是想办法提前把热水管中的冷水排放掉,以达到(几乎)瞬间出热水的效果。事实上,零冷水并不是什么高大上的技术,但可能由于观念没跟上、理解上有误等原因,零冷水技术还没有在家庭中得到普及,不过随着大家对生活品质的要求越来越高,零冷水确实在慢慢流行起来了。

本文来简单分析一下零冷水技术的实现原理,包括各种方案的优缺点和自省DIY的参考思路。

理想的零冷水方案

理想的零冷水方案

写在前面

在文章开始,需要纠正很多人的一个错误观念:零冷水不是为了省钱,而是为了提升生活品质。如果你是省钱最大的心态,那么接下来的内容就可以不用看了,零冷水技术对你毫无价值。

点击阅读全文...

17 Apr

梯度视角下的LoRA:简介、分析、猜测及推广

随着ChatGPT及其平替的火热,各种参数高效(Parameter-Efficient)的微调方法也“水涨船高”,其中最流行的方案之一就是本文的主角LoRA了,它出自论文《LoRA: Low-Rank Adaptation of Large Language Models》。LoRA方法上比较简单直接,而且也有不少现成实现,不管是理解还是使用都很容易上手,所以本身也没太多值得细写的地方了。

然而,直接实现LoRA需要修改网络结构,这略微麻烦了些,同时LoRA给笔者的感觉是很像之前的优化器AdaFactor,所以笔者的问题是:能否从优化器角度来分析和实现LoRA呢?本文就围绕此主题展开讨论。

方法简介

以往的一些结果(比如《Exploring Aniversal Intrinsic Task Subspace via Prompt Tuning》)显示,尽管预训练模型的参数量很大,但每个下游任务对应的本征维度(Intrinsic Dimension)并不大,换句话说,理论上我们可以微调非常小的参数量,就能在下游任务取得不错的效果。

LoRA借鉴了上述结果,提出对于预训练的参数矩阵$W_0\in\mathbb{R}^{n\times m}$,我们不去直接微调$W_0$,而是对增量做低秩分解假设:
\begin{equation}W = W_0 + A B,\qquad A\in\mathbb{R}^{n\times r},B\in\mathbb{R}^{r\times m}\end{equation}

点击阅读全文...

11 Feb

测试函数法推导连续性方程和Fokker-Planck方程

在文章《生成扩散模型漫谈(六):一般框架之ODE篇》中,我们推导了SDE的Fokker-Planck方程;而在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中,我们单独推导了ODE的连续性方程。它们都是描述随机变量沿着SDE/ODE演化的分布变化方程,连续性方程是Fokker-Planck方程的特例。在推导Fokker-Planck方程时,我们将泰勒展开硬套到了狄拉克函数上,虽然结果是对的,但未免有点不伦不类;在推导连续性方程时,我们结合了雅可比行列式和泰勒展开,方法本身比较常规,但没法用来推广到Fokker-Planck方程。

这篇文章我们介绍“测试函数法”,它是推导连续性方程和Fokker-Planck方程的标准方法之一,其分析过程比较正规,并且适用场景也比较广。

点击阅读全文...

14 Feb

生成扩散模型漫谈(十六):W距离 ≤ 得分匹配

Wasserstein距离(下面简称“W距离”),是基于最优传输思想来度量两个概率分布差异程度的距离函数,笔者之前在《从Wasserstein距离、对偶理论到WGAN》等博文中也做过介绍。对于很多读者来说,第一次听说W距离,是因为2017年出世的WGAN,它开创了从最优传输视角来理解GAN的新分支,也提高了最优传输理论在机器学习中的地位。很长一段时间以来,GAN都是生成模型领域的“主力军”,直到最近这两年扩散模型异军突起,GAN的风头才有所下降,但其本身仍不失为一个强大的生成模型。

从形式上来看,扩散模型和GAN差异很明显,所以其研究一直都相对独立。不过,去年底的一篇论文《Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance》打破了这个隔阂:它证明了扩散模型的得分匹配损失可以写成W距离的上界形式。这意味着在某种程度上,最小化扩散模型的损失函数,实则跟WGAN一样,都是在最小化两个分布的W距离。

点击阅读全文...

16 Feb

昨天在Arixv上发现了Google新发的一篇论文《Symbolic Discovery of Optimization Algorithms》,主要是讲自动搜索优化器的,咋看上去没啥意思,因为类似的工作也有不少,大多数结果都索然无味。然而,细读之下才发现别有洞天,原来作者们通过数千TPU小时的算力搜索并结合人工干预,得到了一个速度更快、显存更省的优化器Lion(EvoLved Sign Momentum,不得不吐槽这名字起得真勉强),并在图像分类、图文匹配、扩散模型、语言模型预训练和微调等诸多任务上做了充分的实验,多数任务都显示Lion比目前主流的AdamW等优化器有着更好的效果。

更省显存还更好效果,真可谓是鱼与熊掌都兼得了,什么样的优化器能有这么强悍的性能?本文一起来欣赏一下论文的成果。

先说结果

本文主要关心搜索出来的优化器本身,所以关于搜索过程的细节就不讨论了,对此有兴趣读者自行看原论文就好。Lion优化器的更新过程为
\begin{equation}\text{Lion}:=\left\{\begin{aligned}
&\boldsymbol{u}_t = \text{sign}\big(\beta_1 \boldsymbol{m}_{t-1} + \left(1 - \beta_1\right) \boldsymbol{g}_t\big) \\
&\boldsymbol{\theta}_t = \boldsymbol{\theta}_{t-1} - \eta_t (\boldsymbol{u}_t \color{skyblue}{ + \lambda_t \boldsymbol{\theta}_{t-1}}) \\
&\boldsymbol{m}_t = \beta_2 \boldsymbol{m}_{t-1} + \left(1 - \beta_2\right) \boldsymbol{g}_t
\end{aligned}\right.\end{equation}

点击阅读全文...

16 Jun

梯度流:探索通向最小值之路

在这篇文章中,我们将探讨一个被称为“梯度流(Gradient Flow)”的概念。简单来说,梯度流是将我们在用梯度下降法中寻找最小值的过程中的各个点连接起来,形成一条随(虚拟的)时间变化的轨迹,这条轨迹便被称作“梯度流”。在文章的后半部分,我们将重点讨论如何将梯度流的概念扩展到概率空间,从而形成“Wasserstein梯度流”,为我们理解连续性方程、Fokker-Planck方程等内容提供一个新的视角。

梯度下降

假设我们想搜索光滑函数$f(\boldsymbol{x})$的最小值,常见的方案是梯度下降(Gradient Descent),即按照如下格式进行迭代:
\begin{equation}\boldsymbol{x}_{t+1} = \boldsymbol{x}_t -\alpha \nabla_{\boldsymbol{x}_t}f(\boldsymbol{x}_t)\label{eq:gd-d}\end{equation}
如果$f(\boldsymbol{x})$关于$\boldsymbol{x}$是凸的,那么梯度下降通常能够找到最小值点;相反,则通常只能收敛到一个“驻点”——即梯度为0的点,比较理想的情况下能收敛到一个极小值(局部最小值)点。这里没有对极小值和最小值做严格区分,因为在深度学习中,即便是收敛到一个极小值点也是很难得的了。

点击阅读全文...