31 Oct

bert4keras在手,baseline我有:CLUE基准代码

CLUE(Chinese GLUE)是中文自然语言处理的一个评价基准,目前也已经得到了较多团队的认可。CLUE官方Github提供了tensorflow和pytorch的baseline,但并不易读,而且也不方便调试。事实上,不管是tensorflow还是pytorch,不管是CLUE还是GLUE,笔者认为能找到的baseline代码,都很难称得上人性化,试图去理解它们是一件相当痛苦的事情。

所以,笔者决定基于bert4keras实现一套CLUE的baseline。经过一段时间的测试,基本上复现了官方宣称的基准成绩,并且有些任务还更优。最重要的是,所有代码尽量保持了清晰易读的特点,真·“Deep Learning for Humans”。

代码简介

下面简单介绍一下该代码中各个任务baseline的构建思路。在阅读文章和代码之前,请读者自行先观察一下每个任务的数据格式,这里不对任务数据进行详细介绍。

点击阅读全文...

22 Oct

CAN:借助先验分布提升分类性能的简单后处理技巧

顾名思义,本文将会介绍一种用于分类问题的后处理技巧——CAN(Classification with Alternating Normalization),出自论文《When in Doubt: Improving Classification Performance with Alternating Normalization》。经过笔者的实测,CAN确实多数情况下能提升多分类问题的效果,而且几乎没有增加预测成本,因为它仅仅是对预测结果的简单重新归一化操作。

有趣的是,其实CAN的思想是非常朴素的,朴素到每个人在生活中都应该用过同样的思想。然而,CAN的论文却没有很好地说清楚这个思想,只是纯粹形式化地介绍和实验这个方法。本文的分享中,将会尽量将算法思想介绍清楚。

思想例子

假设有一个二分类问题,模型对于输入$a$给出的预测结果是$p^{(a)} = [0.05, 0.95]$,那么我们就可以给出预测类别为$1$;接下来,对于输入$b$,模型给出的预测结果是$p^{(b)}=[0.5,0.5]$,这时候处于最不确定的状态,我们也不知道输出哪个类别好。

点击阅读全文...

4 Dec

这篇文章谈一下笔者被昨天出来的一篇“神论文”气到了的经历。

这篇“神论文”是《How not to Lie with a Benchmark: Rearranging NLP Leaderboards》,论文的大致内容是说目前很多排行榜算平均都用算术平均,而它认为几何平均与调和平均更加合理。最关键是它还对GLUE、SuperGLUE等榜单上的模型用几何平均和调和平均重新算了一下排名,结果发现那些超过人类的模型在新的平均方案下都没超过人类了。

看上去是不是觉得挺有意思的?我也觉得挺有意思的,所以打算写一篇博客介绍一下它。结果博客快写完了,然后在对数据的时候,发现里边表格的数据全是乱来的!!!真实的结果完全不支撑它的结论!!!所以,这篇博客就从“表扬大会”变成了“批评大会”...

点击阅读全文...

24 Dec

概率分布的熵归一化(Entropy Normalization)

在上一篇文章《从熵不变性看Attention的Scale操作》中,我们从熵不变性的角度推导了一个新的Attention Scale,并且实验显示具有熵不变性的新Scale确实能使得Attention的外推性能更好。这时候笔者就有一个很自然的疑问:

有没有类似L2 Normalization之类的操作,可以直接对概率分布进行变换,使得保持原始分布主要特性的同时,让它的熵为指定值?

笔者带着疑问搜索了一番,发现没有类似的研究,于是自己尝试推导了一下,算是得到了一个基本满意的结果,暂称为“熵归一化(Entropy Normalization)”,记录在此,供有需要的读者参考。

幂次变换

首先,假设$n$元分布$(p_1,p_2,\cdots,p_n)$,它的熵定义为
\begin{equation}\mathcal{H} = -\sum_i p_i \log p_i = \mathbb{E}[-\log p_i]\end{equation}

点击阅读全文...

20 Apr

你的语言模型有没有“无法预测的词”?

众所周知,分类模型通常都是先得到编码向量,然后接一个Dense层预测每个类别的概率,而预测时则是输出概率最大的类别。但大家是否想过这样一种可能:训练好的分类模型可能存在“无法预测的类别”,即不管输入是什么,都不可能预测出某个类别$k$,类别$k$永远不可能成为概率最大的那个。

当然,这种情况一般只出现在类别数远远超过编码向量维度的场景,常规的分类问题很少这么极端的。然而,我们知道语言模型本质上也是一个分类模型,它的类别数也就是词表的总大小,往往是远超过向量维度的,那么我们的语言模型是否有“无法预测的词”?(只考虑Greedy解码)

是否存在

ACL2022的论文《Low-Rank Softmax Can Have Unargmaxable Classes in Theory but Rarely in Practice》首先探究了这个问题,正如其标题所言,答案是“理论上存在但实际出现概率很小”。

点击阅读全文...

19 Jul

生成扩散模型漫谈(三):DDPM = 贝叶斯 + 去噪

到目前为止,笔者给出了生成扩散模型DDPM的两种推导,分别是《生成扩散模型漫谈(一):DDPM = 拆楼 + 建楼》中的通俗类比方案和《生成扩散模型漫谈(二):DDPM = 自回归式VAE》中的变分自编码器方案。两种方案可谓各有特点,前者更为直白易懂,但无法做更多的理论延伸和定量理解,后者理论分析上更加完备一些,但稍显形式化,启发性不足。

贝叶斯定理(来自维基百科)

贝叶斯定理(来自维基百科)

在这篇文章中,我们再分享DDPM的一种推导,它主要利用到了贝叶斯定理来简化计算,整个过程的“推敲”味道颇浓,很有启发性。不仅如此,它还跟我们后面将要介绍的DDIM模型有着紧密的联系。

点击阅读全文...

8 Aug

生成扩散模型漫谈(六):一般框架之ODE篇

上一篇文章《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们对宋飏博士的论文《Score-Based Generative Modeling through Stochastic Differential Equations》做了基本的介绍和推导。然而,顾名思义,上一篇文章主要涉及的是原论文中SDE相关的部分,而遗留了被称为“概率流ODE(Probability flow ODE)”的部分内容,所以本文对此做个补充分享。

事实上,遗留的这部分内容在原论文的正文中只占了一小节的篇幅,但我们需要新开一篇文章来介绍它,因为笔者想了很久后发现,该结果的推导还是没办法绕开Fokker-Planck方程,所以我们需要一定的篇幅来介绍Fokker-Planck方程,然后才能请主角ODE登场。

再次反思

我们来大致总结一下上一篇文章的内容:首先,我们通过SDE来定义了一个前向过程(“拆楼”):
\begin{equation}d\boldsymbol{x} = \boldsymbol{f}_t(\boldsymbol{x}) dt + g_t d\boldsymbol{w}\label{eq:sde-forward}\end{equation}

点击阅读全文...

23 May

NBCE:使用朴素贝叶斯扩展LLM的Context处理长度

在LLM时代还玩朴素贝叶斯(Naive Bayes)?

这可能是许多读者在看到标题后的首个想法。确实如此,当古老的朴素贝叶斯与前沿的LLM相遇时,产生了令人惊讶的效果——我们可以直接扩展现有LLM模型的Context处理长度,无需对模型进行微调,也不依赖于模型架构,具有线性效率,而且效果看起来还不错——这就是本文所提出的NBCENaive Bayes-based Context Extension)方法。

摸石过河

假设$T$为要生成的token序列,$S_1,S_2,\cdots,S_n$是给定的若干个相对独立的Context集合(比如$n$个不同的段落,至少不是一个句子被分割为两个片段那种),假设它们的总长度已经超过了训练长度,而单个$S_k$加$T$还在训练长度内。我们需要根据$S_1,S_2,\cdots,S_n$生成$T$,即估计$p(T|S_1, S_2,\cdots,S_n)$。

点击阅读全文...