这学期的数学建模课,对笔者来说,基本上就是一个锻炼论文写作和Python技能的过程。不过是写论文还是写博客,我都致力于写出符合自己审美观的作品,因此我才会选择$\LaTeX$,我才会选择Python。$\LaTeX$写出来的科学论文是公认的标准而好看的格式,而Python,的确可以作出漂亮的图,也可以简洁地完成所需要的数值计算。我越来越发现,在数学建模、写作方面,除了必不可少的符号推导部分(这部分只能用Mathematica),我已经离不开Python了。
为什么还要求漂亮?内容好不就行了吗?的确,内容才是主要的,但是如果能把展示效果美化一下,而且又不耗费更多的功夫,那么何乐而不为呢?
鬼斧神工:求n维球的体积
By 苏剑林 | 2014-12-23 | 108418位读者 | 引用今天早上同学问了我有关伽马函数和$n$维空间的球体积之间的关系,我记得我以前想要研究,但是并没有落实。既然她提问了,那么就完成这未完成的计划吧。
标准思路
简单来说,$n$维球体积就是如下$n$重积分
$$V_n(r)=\int_{x_1^2+x_2^2+\dots+x_n^2\leq r^2}dx_1 dx_2\dots dx_n$$
用更加几何的思路,我们通过一组平行面($n-1$维的平行面)分割,使得$n$维球分解为一系列近似小柱体,因此,可以得到递推公式
$$V_n (r)=\int_{-r}^r V_{n-1} \left(\sqrt{r^2-t^2}\right)dt$$
设$t=r\sin\theta_1$,就有
$$V_n (r)=r\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_{n-1} \left(r\cos\theta_1\right)\cos\theta_1 d\theta_1$$
将多项式分解为两个不可约多项式之和
By 苏剑林 | 2014-12-22 | 38133位读者 | 引用在高等代数的多项式一章中,通常会有这样的一道练习题:
证明任意有理数域上的多项式都能够表示为两个有理数域上的不可约多项式之和。
这是道简单的练习题,证明方法有多种。首先来介绍一个巧妙的证法。
一个巧妙证明
有理数域上的多项式问题等价于整数域上的多项式问题,因此,只需要对整数域上的多项式进行证明(这步转换使得我们可以使用艾森斯坦判别法)。设$f(x)$是整数域上的一个$n$次多项式:
$$f(x)=a_n x^n+a_{n-1} x^{n-1}+\dots+a_1 x+a_0$$
我们只需要注意到
$$p f(x)=\left[p f(x)+x^n+p\right]-(x^{n}+p)$$
迟到一年的建模:再探碎纸复原
By 苏剑林 | 2014-12-18 | 80351位读者 | 引用前言:一年前国赛的时候,很初级地做了一下B题,做完之后还写了个《碎纸复原:一个人的数学建模》。当时就是对题目很有兴趣,然后通过一天的学习,基本完成了附件一二的代码,对附件三也只是有个概念。而今年我们上的数学建模课,老师把这道题作为大作业让我们做,于是我便再拾起了一年前的那份激情,继续那未完成的一个人的数学建模...
与去年不同的是,这次将所有代码用Python实现了,更简洁,更清晰,甚至可能更高效~~以下是论文全文。
研究背景
2011年10月29日,美国国防部高级研究计划局(DARPA)宣布了一场碎纸复原挑战赛(Shredder Challenge),旨在寻找到高效有效的算法,对碎纸机处理后的碎纸屑进行复原。[1]该竞赛吸引了全美9000支参赛队伍参与角逐,经过一个多月的时间,有一支队伍成功完成了官方的题目。
近年来,碎纸复原技术日益受到重视,它显示了在碎片中“还原真相”的可能性,表明我们可以从一些破碎的片段中“解密”出原始信息来。另一方面,该技术也和照片处理领域中的“全景图拼接技术”有一定联系,该技术是指通过若干张不同侧面的照片,合成一张完整的全景图。因此,分析研究碎纸复原技术,有着重要的意义。
两生物种群竞争模型:LaTeX+Python
By 苏剑林 | 2014-12-15 | 58295位读者 | 引用写在前面:本文是笔者数学建模课的作业,探讨了两生物种群竞争的常微分方程组模型的解的性质,展示了微分方程定性理论的基本思想。当然,本文最重要的目的,是展示LaTeX与Python的完美结合。(本文的图均由Python的Matplotlib模块生成;而文档则采用LaTeX编辑。)
问题提出
研究在同一个自然环境中生存的两个种群之间的竞争关系。假设两个种群独自在这个自然环境中生存时数量演变都服从Logistic规律,又假设当它们相互竞争时都会减慢对方数量的增长,增长速度的减小都与它们数量的乘积成正比。按照这样的假设建立的常微分方程模型为
$$\begin{equation}\label{eq:jingzhengfangcheng}\left\{\begin{aligned}\frac{dx_1}{dt}=r_1 x_1\left(1-\frac{x_1}{N_1}\right)-a_1 x_1 x_2 \\
\frac{dx_2}{dt}=r_2 x_2\left(1-\frac{x_2}{N_2}\right)-a_2 x_1 x_2\end{aligned}\right.\end{equation}$$
本文分别通过定量和定性两个角度来分析该方程的性质。
伽马函数的傅里叶变换之路
By 苏剑林 | 2014-12-08 | 66669位读者 | 引用伽马函数
$$\Gamma(x)=\int_0^{+\infty}t^{x-1}e^{-t}dt$$
作为阶乘的推广,会让很多初学者感到困惑,对于笔者来说也不例外。一个最自然的问题就是:这般复杂的推广公式是如何得到的?
在cos.name的文章《神奇的伽马函数》中,有比较详细地对伽马函数的历史介绍,笔者细读之后也获益匪浅。但美中不足的是,笔者还是没能从中找到引出伽马函数的一种“自然”的办法。所谓“自然”,并不是说最简单的,而是根据一些基本的性质和定义,直接把伽马函数的表达式反解出来。它的过程和运算也许并不简单,但是思想应当是直接而简洁的。当然,我们不能苛求历史上伽马函数以这种方式诞生,但是作为事后探索是有益的,有助于我们了解伽马函数的特性。于是笔者尝试了以下途径,得到了一些结果,可是也得到了一些困惑。
最近评论