路径积分系列:2.随机游走模型
By 苏剑林 | 2016-05-30 | 54440位读者 | 引用随机游走模型形式简单,但通过它可以导出丰富的结果,它是物理中各种扩散模型的基础之一,它也等价于随机过程中的布朗运动.
笔者所阅的文献表明,数学家已经对对称随机游走问题作了充分研究[2],也探讨了随机游走问题与偏微分方程的关系[3],并且还研究过不对称随机游走问题[4]. 然而,已有结果的不足之处有:1、在推导随机游走问题的概率分布或者偏微分方程之时,所用的方法不够简洁明了;2、没有研究更一般的不对称随机游走问题.
本章弥补了这一不足,首先通过母函数和傅里叶变换的方法,推导出了不对称随机游走问题所满足的偏微分方程,并且提出,由于随机游走容易通过计算机模拟,因此通过随机游走来模拟偏微分方程的解是一种有效的数值途径.
模型简介
本节通过一个本质上属于二项分布的走格子问题来引入随机游走.
考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每秒钟它以相等的概率向前或向后移动一格($+1$或$-1$),问$n$秒后它所处位置的概率分布.
路径积分系列:1.我的毕业论文
By 苏剑林 | 2016-05-30 | 28137位读者 | 引用之前承诺过会把毕业论文共享出来,让大家批评指正,却一直偷懒没动。事实上,毕业论文的主要内容就是路径积分的一些入门级别的内容,标题为《随机游走、随机微分方程与偏微分方程的路径积分方法》。我的摘要是这样写的:
本文从随机游走模型出发,得到了关于随机游走模型的一般结果;然后基于随机游走模型引入了路径积分,并且通过路径积分方法,实现了随机游走、随机微分方程与抛物型微分方程的相互转化,并给出了一些计算案例.
路径积分方法是量子理论的一种形式,但实际上它可以抽象为一个有用的数学工具,本文的主要方法正是抽象后的路径积分;其次,量子力学中有一个相当典型的抛物型偏微分方程——薛定谔方程,物理学家已经对它进行了大量的研究,有众多的成果;而随机微分方程是一个微分方程的拓展,在物理、工程、金融等很多方面都有重要应用,这个领域中也有很多研究方法;最后,随机游走是一个简单而重要的模型,它是很多扩散模型的基础,而且具有容易使用计算机模拟的特性. 因此,实现三者的转化是很有意义的.
本文有一些新的内容,比如现有文献比较少研究的不对称随机游走方面、以及现有文献比较含糊的对路径积分的介绍等,可以供同好参考,希望借此方式,能够让一些读者以更简洁明了的方式理解路径积分. 但是本文主要是陈述性的,旨在在国内推广路径积分方法. 在国外,路径积分方法得到了相当的重视,它源于量子力学,但应用已经不仅仅限于量子力学,如著作[1],因此,推广路径积分方法、增加路径积分的中文资料,是很有意义和很有必要的事情.
本文所有推导和例子均以一维为例,相应的多维问题可以类似地计算。
调侃:万有引力与爱因斯坦的理论
By 苏剑林 | 2016-05-18 | 48250位读者 | 引用我不是研究引力的,也没有很好地学习过引力。在理论物理方面,我学习经典力学和量子力学比学习广义相对论要多得多。因此,本来我是不应该谈引力的,以免误人子弟。不过,在一次坐车的途中,司机的刹车和加速让我联想到了一些跟引力有关的东西,自我感觉比较有趣,所以发给大家分享一下,也请大家指正。
等效原理
引力,准确来说应该是“万有引力”。所谓“万有”,有两个含义:1、所有物体都能够产生引力;2、所有物体都被引力影响。一个力居然是“万有”的,这让爱因斯坦感觉到非常奇怪,这也是四种基本力之中,引力跟其他力区别最明显的地方。相比之下,电磁相互作用力就只能存在于有“电”的地方,弱相互作用只存在于费米子,等等。
除了引力之外,我们平时还遇到过什么“万有”的力吗?貌似没有。但是我们想象一下,当你坐在一辆长途大巴匀速前进时,突然司机来了一个急刹车,在刹车的那一瞬间,所有人都往前倾了,不仅如此,可能你的行李箱、你的随身物品都往前移的,事实上,车上所有东西都受到了一个往前的力!对于那辆车上的人和物来说,刹车的那一瞬间,就存在着一个“万有”的力!
Coming Back...
By 苏剑林 | 2016-05-15 | 37925位读者 | 引用上一篇博文的发布时间是4月15日,到今天刚好一个月没更新了,但是科学空间的访问量还在。感谢大家对本空间的支持,BoJone对久未更新表示非常抱歉。在恢复更新之前,请允许笔者记记流水账。
在“消失”的一个月中,笔者主要的事情是毕业论文和数据挖掘竞赛。首先毕业论文方面,论文于4月22日交稿,4月29日答辩,答辩完后就意味着毕业论文的事情结束了。我的毕业论文主要写了路径积分在描述随机游走、偏微分方程、随机微分方程的应用。既然是本科论文,就不能说得太晦涩,因此论文整体来看还是比较易读的,可以作为路径积分的入门教程。后面我会略加修改,分开几部分发布在科学空间中的,到时请大家批评指正。
说到路径积分,不得不说到做《量子力学与路径积分》的习题解答这件事情了。很遗憾,这一个多月来,基本没有时间做习题。不过后面我会继续做下去的,已发布的版本,也请有兴趣的读者指出问题。记得年初的时候,朋友问我今年的愿望是什么,我随意地回答了“希望做完一本书的习题”,这本书,当然就是《量子力学与路径积分》了,我相信今年应该能够完成的。
斯特灵(stirling)公式与渐近级数
By 苏剑林 | 2016-04-15 | 58931位读者 | 引用斯特灵近似,或者称斯特灵公式,最开始是作为阶乘的近似提出
$$n!\sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$
符号$\sim$意味着
$$\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{n!}=1$$
将斯特灵公式进一步提高精度,就得到所谓的斯特灵级数
$$n!=\sqrt{2\pi n}\left(\frac{n}{e}\right)^n\left(1+\frac{1}{12n}+\frac{1}{288n^2}\dots\right)$$
很遗憾,这个是渐近级数。
相关资料有:
https://zh.wikipedia.org/zh-cn/斯特灵公式
https://en.wikipedia.org/wiki/Stirling%27s_approximation
本文将会谈到斯特灵公式及其渐近级数的一个改进的推导,并解释渐近级数为什么渐近。
【备忘】用树莓派3做无线路由器
By 苏剑林 | 2016-04-12 | 64529位读者 | 引用3月初发布的树莓派3自带了WiFi和蓝牙,再加上它本来就有一个网口,因此俨然就是一台无线路由器了。我也忍不住入手了一个,打算用来做路由器和NAS。树莓派做路由器的教程已经有很多了,当然,基本都是基于树莓派2的,3之前的版本都没有自带WiFi,因此需要自己配无线网卡,而3自带了无线网卡,配置就方便多了。参考了两篇外文教程,成功配置,在这里记录一下。
参考教程:
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/
https://gist.github.com/Lewiscowles1986/fecd4de0b45b2029c390#file-rpi3-ap-setup-sh
一个非线性差分方程的隐函数解
By 苏剑林 | 2016-04-09 | 40885位读者 | 引用问题来源
笔者经常学习的数学研发论坛曾有一帖讨论下述非线性差分方程的渐近求解:
$$a_{n+1}=a_n+\frac{1}{a_n^2},\, a_1=1$$
原帖子在这里,从这帖子中我获益良多,学习到了很多新技巧。主要思路是通过将两边立方,然后设$x_n=a_n^3$,变为等价的递推问题:
$$x_{n+1}=x_n+3+\frac{3}{x_n}+\frac{1}{x_n^2},\,x_1=1$$
然后可以通过巧妙的技巧得到渐近展开式:
$$x_n = 3n+\ln n+a+\frac{\frac{1}{3}(\ln n+a)-\frac{5}{18}}{n}+\dots$$
具体过程就不提了,读者可以自行到上述帖子学习。
然而,这种形式的解虽然精妙,但存在一些笔者不是很满意的地方:
1、解是渐近的级数,这就意味着实际上收敛半径为0;
2、是$n^{-k}$形式的解,对于较小的$n$难以计算,这都使得高精度计算变得比较困难;
3、当然,题目本来的目的是渐近计算,但是渐近分析似乎又没有必要展开那么多项;
4、里边带有了一个本来就比较难计算的极限值$a$;
5、求解过程似乎稍欠直观。
当然,上面这些缺点,有些是鸡蛋里挑骨头的。不过,也正是这些缺点,促使我寻找更好的形式的解,最终导致了这篇文章。
《量子力学与路径积分》习题解答V0.5
By 苏剑林 | 2016-04-01 | 35428位读者 | 引用习题解答继续艰难推进中,目前是0.5版本,相比0.4版,跳过了8、9章,先做了第10、11章统计力学部分的习题。
第10章有10道习题,第11章其实没有习题。看上去很少,但其实每一道习题的难度都很大。这两章的主要内容都是在用路径积分方法算统计力学中的配分函数,这本来就是一个很艰辛的课题。加上费曼在书中那形象的描述,容易让读者能够认识到大概,但是却很难算下去。事实上,这一章的习题,我参考了相当多的资料,中文的、英文的都有,才勉强完成了。
虽说是完成,但10道题目中,我只完成了9道,其中问题10-3是有困惑的,我感觉的结果跟费曼给出的不一样,因此就算不下去了。在这里提出来,希望了解的读者赐教。
最近评论