22
Oct
CAN:借助先验分布提升分类性能的简单后处理技巧
By 苏剑林 | 2021-10-22 | 144914位读者 | 引用顾名思义,本文将会介绍一种用于分类问题的后处理技巧——CAN(Classification with Alternating Normalization),出自论文《When in Doubt: Improving Classification Performance with Alternating Normalization》。经过笔者的实测,CAN确实多数情况下能提升多分类问题的效果,而且几乎没有增加预测成本,因为它仅仅是对预测结果的简单重新归一化操作。
有趣的是,其实CAN的思想是非常朴素的,朴素到每个人在生活中都应该用过同样的思想。然而,CAN的论文却没有很好地说清楚这个思想,只是纯粹形式化地介绍和实验这个方法。本文的分享中,将会尽量将算法思想介绍清楚。
思想例子
假设有一个二分类问题,模型对于输入$a$给出的预测结果是$p^{(a)} = [0.05, 0.95]$,那么我们就可以给出预测类别为$1$;接下来,对于输入$b$,模型给出的预测结果是$p^{(b)}=[0.5,0.5]$,这时候处于最不确定的状态,我们也不知道输出哪个类别好。
16
Jul
最近评论