写了个刷论文的辅助网站:Cool Papers
By 苏剑林 | 2023-12-25 | 123653位读者 | 引用写在开头
一直以来,笔者都有日刷Arxiv的习惯,以求尽可能跟上领域内最新成果,并告诫自己“不进则退”。之前也有不少读者问我是怎么刷Arxiv的、有什么辅助工具等,但事实上,在很长的时间里,笔者都是直接刷Arxiv官网,并且没有用任何算法过滤,都是自己一篇篇过的。这个过程很枯燥,但并非不能接受,之所以不用算法初筛,主要还是担心算法漏召,毕竟“刷”就是为了追新,一旦算法漏召就“错失先机”了。
自从Kimi Chat发布后,笔者就一直计划着写一个辅助网站结合Kimi来加速刷论文的过程。最近几个星期稍微闲了一点,于是在GPT4、Kimi的帮助下,初步写成了这个网站,并且经过几天的测试和优化后,已经逐步趋于稳定,于是正式邀请读者试用。
Cool Papers:https://papers.cool
更便捷的Cool Papers打开方式:Chrome重定向扩展
By 苏剑林 | 2024-02-02 | 55373位读者 | 引用一些铺垫
自Cool Papers上线以来,很多用户就建议笔者加入搜索功能,后面也确实在前端用JS简单做了个页面内搜索,解决了部分用户的需求,但仍有读者希望引入更完整的全局搜索。诚然,笔者理解这个需求确实是存在,但Cool Papers的数据是逐天累积的,目前才上线一个月,论文数并不多,建立一个大而全的搜索引擎意义不大,其次做搜索也不是笔者的强项,以及并没有很好的利用LLM优化搜索的思路,等等。总而言之,暂时没有条件实现一个全面而又有特色的搜索,所以不如不做(也欢迎大家在评论区集思广益)。
后来,经过和同事讨论,想出了一个“借花献佛”的思路——写一个Chrome的重定向扩展,可以从任意页面重定向到Cool Papers。这样我们可以用任意方式(如Google搜索或者直接Arxiv官方搜索)找到Arxiv上的论文,然后右击一下就转到Cool Papers了。前两周这个扩展已经在Chrome应用商店上线,上周服务器配合做了一些调整,如今大家可以尝试使用了。
时空之章:将Attention视为平方复杂度的RNN
By 苏剑林 | 2024-03-18 | 56415位读者 | 引用近年来,RNN由于其线性的训练和推理效率,重新吸引了不少研究人员和用户的兴趣,隐约有“文艺复兴”之势,其代表作有RWKV、RetNet、Mamba等。当将RNN用于语言模型时,其典型特点就是每步生成都是常数的空间复杂度和时间复杂度,从整个序列看来就是常数的空间复杂度和线性的时间复杂度。当然,任何事情都有两面性,相比于Attention动态增长的KV Cache,RNN的常数空间复杂度通常也让人怀疑记忆容量有限,在Long Context上的效果很难比得上Attention。
在这篇文章中,我们表明Causal Attention可以重写成RNN的形式,并且它的每一步生成理论上也能够以O(1)的空间复杂度进行(代价是时间复杂度非常高,远超平方级)。这表明Attention的优势(如果有的话)是靠计算堆出来的,而不是直觉上的堆内存,它跟RNN一样本质上都是常数量级的记忆容量(记忆瓶颈)。
【生活杂记】用电饭锅来煮米汤
By 苏剑林 | 2024-07-17 | 18094位读者 | 引用近乎完美地解决MathJax与Marked的冲突
By 苏剑林 | 2024-08-26 | 15627位读者 | 引用在《让MathJax更好地兼容谷歌翻译和延时加载》我们提到Cool Papers加入了MathJax来解析LaTeX公式,不过万万没想到引发了诸多兼容性问题,虽然部分问题纯粹是笔者的强迫症作祟,但一个尽可能完美的解决方案终究是让人赏心悦目的,所以还是愿意在上面花一点心思。
上一篇文章我们已经解决了MathJax与谷歌翻译、延时加载的兼容性,这篇文章我们则来解决MathJax与Marked的冲突。
问题简述
Markdown是一种轻量级标记语言,允许人们使用易读易写的纯文本格式编写文档,可谓是目前最流行的写作语法之一,Cool Papers中的[Kimi]功能,基本上也是按照Markdown语法输出。然而。Markdown并不是直接面向浏览器的语言,面向浏览器的语言叫做HTML,所以在展示给用户之前,有一个Markdown转HTML的过程(渲染)。
“闭门造车”之多模态思路浅谈(三):位置编码
By 苏剑林 | 2024-09-06 | 65495位读者 | 引用在前面的文章中,我们曾表达过这样的观点:多模态LLM相比纯文本LLM的主要差异在于,前者甚至还没有形成一个公认为标准的方法论。这里的方法论,不仅包括之前讨论的生成和训练策略,还包括一些基础架构的设计,比如本文要谈的“多模态位置编码”。
对于这个主题,我们之前在《Transformer升级之路:17、多模态位置编码的简单思考》就已经讨论过一遍,并且提出了一个方案(RoPE-Tie)。然而,当时笔者对这个问题的思考仅处于起步阶段,存在细节考虑不周全、认识不够到位等问题,所以站在现在的角度回看,当时所提的方案与完美答案还有明显的距离。
因此,本文我们将自上而下地再次梳理这个问题,并且给出一个自认为更加理想的结果。
多模位置
多模态模型居然连位置编码都没有形成共识,这一点可能会让很多读者意外,但事实上确实如此。对于文本LLM,目前主流的位置编码是RoPE(RoPE就不展开介绍了,假设读者已经熟知),更准确来说是RoPE-1D,因为原始设计只适用于1D序列。后来我们推导了RoPE-2D,这可以用于图像等2D序列,按照RoPE-2D的思路我们可以平行地推广到RoPE-3D,用于视频等3D序列。
最近评论