5 Jun

眼见未必为实——“视超光速”现象的产生

超光速飞行

超光速飞行

爱因斯坦理论的信仰者们必须接受一个理论,那就是光速是宇宙中最快的速度,任何物体的速度都不可能超过光速(两束反向发射的光,它们的相对速度依然是c,而不是2c)。

但是,却有一个不容否定的事实,天文学家的确观测到了运行速度大于光速的天体。这是怎么回事呢?爱因斯坦错了?相对论有误?还是有其他不为我们知道的秘密?

不过要是想从这个事实推翻相对论是不大可能的,因为爱因斯坦的信仰者们从简单的几何定理出发,就解释了这个现象。

点击阅读全文...

23 Jul

Welcome New Server for CosmoStation

wilderness_logo

wilderness_logo

经过近5个小时的迁移,终于完成了新服务器的更换了。

读者们现在所浏览的科学空间,以及大多数宇宙驿站的网站,都位于新服务器上了。这一次升级是宇宙驿站建立以来第八次升级(这个数字包含了网络升级及硬件升级),也是科学空间建立以来宇宙驿站进行的第二次升级,衷心祝福新的驿站服务器!

点击阅读全文...

18 Jul

科学空间终于恢复访问了!

经过10天的抢险维修,数据中心机房开始逐步恢复运行。科学空间也能够正常访问了!激动中...^_^

这是科学空间建立以来,宇宙驿站服务器所经受的最大一次灾难了,中断时间是迄今为止最长的一次。大量的天文科普网站都被中断,原因很简单,它们和科学空间一样,都把网站寄放在宇宙驿站服务器上。除了科学空间,中断访问的还有牧夫天文论坛、星友空间站、空间天文网等等。

点击阅读全文...

19 Jul

【备忘】在自己的电脑上搭建服务器

宇宙驿站维修期间,BoJone曾经想过用自己的电脑来搭建服务器,建立一个临时页面。但后来发现经常开着电脑不大好,就没有这样做了。不过如何在自己的电脑上搭建服务器,还是值得笔记一下的。

BoJone还在使用WinXP专业版系统,最标准的方法当然是使用IIS,可以一气呵成。但是考虑到IIS需要配置挺多东西的,所以就没有这样做了。所以自己在网上下载一些小软件,“拼凑”成了一个临时服务器。这样的方法也能够很方便地应用到各个Windows系统。

点击阅读全文...

2 Jan

用复数化简二次曲线的尝试

当二次型在二维平面的情况下时,就等价于二次曲线的化简。二次曲线的化简主要用到平移和旋转,这恰好是复数所“擅长”的。因此,以复数为工具来对二次曲线进行化简,似乎是一种很显然的思路。然而,我却没有看到这方面的内容,而且我自己之前也忽略了这一思路。下面我对这个思路进行一点探索。

由于只打算做一些启发性引导,所以在这里只考虑$ Ax^2+2Bxy+Cy^2=1$这种不完全的形式(它不包含抛物线)。

点击阅读全文...

28 Dec

【分享】兴隆山的双子座流星雨

记得科学空间刚开始的时候,没有什么原创的内容,有一段时间在翻译APOD的图片,后来渐渐地专注原创,就没有翻译了。这次再来分享一张图片,是兴隆山上的双子座流星雨,是国内爱好者Steed Yu拍摄的,被APOD收录。

兴隆山的双子座流星雨(来源:http://apod.nasa.gov/apod/ap151223.html)

兴隆山的双子座流星雨(来源:http://apod.nasa.gov/apod/ap151223.html)

点击阅读全文...

15 Jan

与日食失之交臂...

今天只是在中午看到了几秒钟的太阳,天空一直都阴阴的。

这是中国本世纪首场日环食。此次日环食是近22年以来首次在中国发生的日环食,也是全球未来1000年内发生的日环食中环食持续时间最长的。广东虽然只能够看到偏食,但是也算是能够一饱眼福!

可惜,天公不作美,尽管怀着最大的希望去期待,仍然只是得到了失望。然而失望片刻,希望便再次而生。我期待着下一场食——今年的月食、2012的日环食(广东是日环食)

论坛讨论:http://bbs.spaces.ac.cn/topic.php?id=10

26 Dec

体积与阿达马不等式

阿达马不等式
设有$n$阶实矩阵$\boldsymbol{A}=(a_{ij})_{n\times n}$,那么它的行列式满足阿达马(Hadamard)不等式
$$\begin{equation}
\left(\det \boldsymbol{A}\right)^2 \leq \prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{equation}$$

这是阿达马在1893年首先发表的。根据体积就是行列式的说法,上述不等式具有相当明显的几何意义。当$n=2$时,它就是说平行四边形的面积不大于两边长的乘积;当$n=3$时,它就是说平行六面体的体积不大于三条棱长的乘积;高维可以类比。这些结论在几何中几乎都是“显然成立”的东西。因此很难理解为什么这个不等式在1893年才被发现。当然,代数不会接受如此笼统的说法,它需要严格的证明。

点击阅读全文...