【福岛核电站】“最坏情况”有多坏?
By 苏剑林 | 2011-03-20 | 25437位读者 | 引用历史上的谜案——刘徽有没有使用外推法?
By 苏剑林 | 2011-03-12 | 30806位读者 | 引用话说当年我国古代数学家刘徽创立“割圆术”计算圆周率的事迹,在今天已被不少学生知晓;虽不能说家喻户晓,但是也为各教科书以及老师津津乐道。和古希腊的“数学之神”阿基米德同出一辙,刘徽也是使用圆的内接、外切正多边形来逼近圆形的;不一样的是,刘徽使用的方法是计算半径为1的圆的内接、外切正多边形的面积,而阿基米德计算的则是直径为1的圆的内接、外切正多边形的周长。两者的计算效果有什么区别呢?其实阿基米德的方法应该更快一点,阿基米德算到正n边形所得到的值,相当于刘徽算到正2n边形了。
在此我们不再对两者的计算方法进行区分,因为两者的本质都是一样的。按照现代数学的写法,“割圆术”的理论依据是
$$lim_{n\to \infty} n \sin(\frac{\pi}{n})=\pi\tag{1}$$
当然,刘徽不可能有现代计算正弦函数值的公式(现在计算正弦函数值一般用泰勒级数展开,而泰勒级数展开需要用到$\pi$的值),甚至在他那个时代就连笔墨也没有,据我所知即使是后来的祖冲之推算圆周率时,唯一的计算工具也只是现在称为“算筹”的小棍。不过刘徽还是凭借着超强的毅力,利用递推的方法逐步求圆周率。
沐浴问题——调控水温
By 苏剑林 | 2011-03-08 | 25793位读者 | 引用载入正题之前,不妨闲扯一下BoJone的家...
BoJone在一些文章中已经提到过,我是一个来自农村的孩子,目前我的家也在农村。虽然生活并不能说“贫困”,家中也添置了不少电器,不过一直没有购置的就是洗衣机和热水器。洗衣机嘛,我觉得衣服自己动手洗是很好的,至少不让自己偷懒。至于热水器,因为家在农村,所以能够比较方便地弄到一些柴草,而且稻谷收割完后的桔梗也可以当燃料用,平时烧菜一般都用烧柴草,因此热水器实在没有多大必要。(很遗憾,沼气池没有能够在这里普及起来,大家可不要责怪我排放温室气体哦...^_^)
既然没有热水器,那只能人工烧水了。往往是烧好一大锅水,洗澡时盛一盆子,然后加水降温,接着就可以洗白白了。本文的问题正是来源于调水温。当水很热时,为了加快降温,我们往往“双管齐下”:一边向盆子注入冷水,一般从盆子放出热水。于是就有了一个问题:水的温度与时间成什么关系?
科学空间:2011年3月重要天象
By 苏剑林 | 2011-03-05 | 30958位读者 | 引用几颗经典行星,将成为3月星空剧场的主角。其中难得一见的水星将迎来一次观测条件很好的东大距,而到了下旬,土星也几乎整夜可见。随着落下时间的逐渐提前,木星的观测条件正逐渐变差。作为晨星的金星升起的时间也正不断推迟,我们将越来越难观测到它的身影。
天象大观
01日 11:40 金星合月: 1.7° S
11日 12:35 月合昴宿星团: 1.8° N
16日 04:16 水星合木星: 2° N
21日 07:21 春分
21日 19:00 月合角宿一: 2.5° N
21日 19:54 天王星合日
23日 08:59 水星大距: 18.6° E
31日 21:25 金星合月: 6.6° S
线圈感抗和电容容抗的计算
By 苏剑林 | 2011-02-26 | 54023位读者 | 引用学到人教版高二物理选修3-2的同学们,眼前会出现许多新的名词,如楞次定律、自感(电感)、感抗、容抗等等。其中对于电感,在中文维基百科给予的解释为:当电流改变时,因电磁感应而产生抵抗电流改变的电动势(EMF,electromotive force)。电路中的任何电流,会产生磁场,磁场的磁通量又作用于电路上。依据楞次定律,此磁通会借由感应出的电压(反电动势)而倾向于抵抗电流的改变。磁通改变量对电流改变量的比值称为自感,自感通常也就直接称作是这个电路的电感。
自感的计算公式为:$U=-L\frac{dI}{dt}$,U是自感电动势,I是电流,负号表示自感电动势反抗原来的电流。L是比例系数,就称为电感,对于同一个线圈来说,L是常数,单位是$V\cdot t//A=\Omega \cdot t$,同时也简记为$H$(亨利)。
有限Vs无限:无穷电荷板的场|平行板电容
By 苏剑林 | 2011-02-26 | 50797位读者 | 引用《方程与宇宙》:一种有趣的三体问题坐标
By 苏剑林 | 2011-02-19 | 23578位读者 | 引用通常来说,选取惯性系为参考系,列出的三体问题方程为
$$\ddot{\vec{r}}_k=\sum_{i=1,i != k}^{n} Gm_i\frac{\vec{r}_i-\vec{r}_k}{|\vec{r}_i-\vec{r}_k|^3}$$
历史上出现过很多不同形式的变换,使得三体问题的运动方程有了各样的形式,如Lagrange形式、Jacobi形式、Hamilton形式等。这些变换形式都各有特点,都能够在一定程度上化简三体问题。BoJone在研究摆弄等质量型三体问题的运动方程时,也发现了一种很有趣的变换,在此贴出与大家分享。
设$\vec{R}_1=\vec{r}_1-\vec{r}_2,\vec{R}_2=\vec{r}_2-\vec{r}_3,\vec{R}_3=\vec{r}_3-\vec{r}_1$,则三体问题的运动方程变为
最近评论