更别致的词向量模型(四):模型的求解
By 苏剑林 | 2017-11-19 | 51635位读者 | 引用损失函数
现在,我们来定义loss,以便把各个词向量求解出来。用$\tilde{P}$表示$P$的频率估计值,那么我们可以直接以下式为loss
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle-\log\frac{\tilde{P}(w_i,w_j)}{\tilde{P}(w_i)\tilde{P}(w_j)}\right)^2\tag{16}\]
相比之下,无论在参数量还是模型形式上,这个做法都比glove要简单,因此称之为simpler glove。glove模型是
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log X_{ij}\right)^2\tag{17}\]
在glove模型中,对中心词向量和上下文向量做了区分,然后最后模型建议输出的是两套词向量的求和,据说这效果会更好,这是一个比较勉强的trick,但也不是什么毛病。
\[\begin{aligned}&\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log \tilde{P}(w_i,w_j)\right)^2\\
=&\sum_{w_i,w_j}\left[\langle \boldsymbol{v}_i+\boldsymbol{c}, \boldsymbol{\hat{v}}_j+\boldsymbol{c}\rangle+\Big(b_i-\langle \boldsymbol{v}_i, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)\right.\\
&\qquad\qquad\qquad\qquad\left.+\Big(\hat{b}_j-\langle \boldsymbol{\hat{v}}_j, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)-\log X_{ij}\right]^2\end{aligned}\tag{18}\]
这就是说,如果你有了一组解,那么你将所有词向量加上任意一个常数向量后,它还是一组解!这个问题就严重了,我们无法预估得到的是哪组解,一旦加上的是一个非常大的常向量,那么各种度量都没意义了(比如任意两个词的cos值都接近1)。事实上,对glove生成的词向量进行验算就可以发现,glove生成的词向量,停用词的模长远大于一般词的模长,也就是说一堆词放在一起时,停用词的作用还明显些,这显然是不利用后续模型的优化的。(虽然从目前的关于glove的实验结果来看,是我强迫症了一些。)
互信息估算
更别致的词向量模型(三):描述相关的模型
By 苏剑林 | 2017-11-19 | 116978位读者 | 引用几何词向量
上述“月老”之云虽说只是幻想,但所面临的问题却是真实的。按照传统NLP的手段,我们可以统计任意两个词的共现频率以及每个词自身的频率,然后去算它们的相关度,从而得到一个“相关度矩阵”。然而正如前面所说,这个共现矩阵太庞大了,必须压缩降维,同时还要做数据平滑,给未出现的词对的相关度赋予一个合理的估值。
在已有的机器学习方案中,我们已经有一些对庞大的矩阵降维的经验了,比如SVD和pLSA,SVD是对任意矩阵的降维,而pLSA是对转移概率矩阵$P(j|i)$的降维,两者的思想是类似的,都是将一个大矩阵$\boldsymbol{A}$分解为两个小矩阵的乘积$\boldsymbol{A}\approx\boldsymbol{B}\boldsymbol{C}$,其中$\boldsymbol{B}$的行数等于$\boldsymbol{A}$的行数,$\boldsymbol{C}$的列数等于$\boldsymbol{A}$的列数,而它们本身的大小则远小于$\boldsymbol{A}$的大小。如果对$\boldsymbol{B},\boldsymbol{C}$不做约束,那么就是SVD;如果对$\boldsymbol{B},\boldsymbol{C}$做正定归一化约束,那就是pLSA。
但是如果是相关度矩阵,那么情况不大一样,它是正定的但不是归一的,我们需要为它设计一个新的压缩方案。借鉴矩阵分解的经验,我们可以设想把所有的词都放在$n$维空间中,也就是用$n$维空间中的一个向量来表示,并假设它们的相关度就是内积的某个函数(为什么是内积?因为矩阵乘法本身就是不断地做内积):
\[\frac{P(w_i,w_j)}{P(w_i)P(w_j)}=f\big(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle\big)\tag{8}\]
其中加粗的$\boldsymbol{v}_i, \boldsymbol{v}_j$表示词$w_i,w_j$对应的词向量。从几何的角度看,我们就是把词语放置到了$n$维空间中,用空间中的点来表示一个词。
因为几何给我们的感觉是直观的,而语义给我们的感觉是复杂的,因此,理想情况下我们希望能够通过几何关系来反映语义关系。下面我们就根据我们所希望的几何特性,来确定待定的函数$f$。事实上,glove词向量的那篇论文中做过类似的事情,很有启发性,但glove的推导实在是不怎么好看。请留意,这里的观点是新颖的——从我们希望的性质,来确定我们的模型,而不是反过来有了模型再推导性质。
机场-飞机+火车=火车站
更别致的词向量模型(二):对语言进行建模
By 苏剑林 | 2017-11-19 | 53520位读者 | 引用从条件概率到互信息
目前,词向量模型的原理基本都是词的上下文的分布可以揭示这个词的语义,就好比“看看你跟什么样的人交往,就知道你是什么样的人”,所以词向量模型的核心就是对上下文的关系进行建模。除了glove之外,几乎所有词向量模型都是在对条件概率$P(w|context)$进行建模,比如Word2Vec的skip gram模型就是对条件概率$P(w_2|w_1)$进行建模。但这个量其实是有些缺点的,首先它是不对称的,即$P(w_2|w_1)$不一定等于$P(w_1|w_2)$,这样我们在建模的时候,就要把上下文向量和目标向量区分开,它们不能在同一向量空间中;其次,它是有界的、归一化的量,这就意味着我们必须使用softmax等方法将它压缩归一,这造成了优化上的困难。
事实上,在NLP的世界里,有一个更加对称的量比单纯的$P(w_2|w_1)$更为重要,那就是
\[\frac{P(w_1,w_2)}{P(w_1)P(w_2)}=\frac{P(w_2|w_1)}{P(w_2)}\tag{1}\]
这个量的大概意思是“两个词真实碰面的概率是它们随机相遇的概率的多少倍”,如果它远远大于1,那么表明它们倾向于共同出现而不是随机组合的,当然如果它远远小于1,那就意味着它们俩是刻意回避对方的。这个量在NLP界是举足轻重的,我们暂且称它为“相关度“,当然,它的对数值更加出名,大名为点互信息(Pointwise Mutual Information,PMI):
\[\text{PMI}(w_1,w_2)=\log \frac{P(w_1,w_2)}{P(w_1)P(w_2)}\tag{2}\]
有了上面的理论基础,我们认为,如果能直接对相关度进行建模,会比直接对条件概率$P(w_2|w_1)$建模更加合理,所以本文就围绕这个角度进行展开。在此之前,我们先进一步展示一下互信息本身的美妙性质。
更别致的词向量模型(一):simpler glove
By 苏剑林 | 2017-11-19 | 42044位读者 | 引用如果问我哪个是最方便、最好用的词向量模型,我觉得应该是word2vec,但如果问我哪个是最漂亮的词向量模型,我不知道,我觉得各个模型总有一些不足的地方。且不说试验效果好不好(这不过是评测指标的问题),就单看理论也没有一个模型称得上漂亮的。
本文讨论了一些大家比较关心的词向量的问题,很多结论基本上都是实验发现的,缺乏合理的解释,包括:
如果去构造一个词向量模型?
为什么用余弦值来做近义词搜索?向量的内积又是什么含义?
词向量的模长有什么特殊的含义?
为什么词向量具有词类比性质?(国王-男人+女人=女王)
得到词向量后怎么构建句向量?词向量求和作为简单的句向量的依据是什么?
这些讨论既有其针对性,也有它的一般性,有些解释也许可以直接迁移到对glove模型和skip gram模型的词向量性质的诠释中,读者可以自行尝试。
围绕着这些问题的讨论,本文提出了一个新的类似glove的词向量模型,这里称之为simpler glove,并基于斯坦福的glove源码进行修改,给出了本文的实现,具体代码在Github上。
【不可思议的Word2Vec】6. Keras版的Word2Vec
By 苏剑林 | 2017-08-06 | 139342位读者 | 引用前言
看过我之前写的TF版的Word2Vec后,Keras群里的Yin神问我有没有Keras版的。事实上在做TF版之前,我就写过Keras版的,不过没有保留,所以重写了一遍,更高效率,代码也更好看了。纯Keras代码实现Word2Vec,原理跟《【不可思议的Word2Vec】5. Tensorflow版的Word2Vec》是一样的,现在放出来,我想,会有人需要的。(比如,自己往里边加一些额外输入,然后做更好的词向量模型?)
由于Keras同时支持tensorflow、theano、cntk等多个后端,这就等价于实现了多个框架的Word2Vec了。嗯,这样想就高大上了,哈哈~
代码
【不可思议的Word2Vec】5. Tensorflow版的Word2Vec
By 苏剑林 | 2017-05-27 | 109319位读者 | 引用本文封装了一个比较完整的Word2Vec,其模型部分使用tensorflow实现。本文的目的并非只是再造一次Word2Vec这个轮子,而是通过这个例子来熟悉tensorflow的写法,并且测试笔者设计的一种新的softmax loss的效果,为后面研究语言模型的工作做准备。
不同的地方
Word2Vec的基本的数学原理,请移步到《【不可思议的Word2Vec】 1.数学原理》一文查看。本文的主要模型还是CBOW或者Skip-Gram,但在loss设计上有所不同。本文还是使用了完整的softmax结构,而不是huffmax softmax或者负采样方案,但是在训练softmax时,使用了基于随机负采样的交叉熵作为loss。这种loss与已有的nce_loss和sampled_softmax_loss都不一样,这里姑且命名为random softmax loss。
另外,在softmax结构中,一般是$\text{softmax}(Wx+b)$这样的形式,考虑到$W$矩阵的形状事实上跟词向量矩阵的形状是一样的,因此本文考虑了softmax层与词向量层共享权重的模型(这时候直接让$b$为0),这种模型等效于原有的Word2Vec的负采样方案,也类似于glove词向量的词共现矩阵分解,但由于使用了交叉熵损失,理论上收敛更快,而且训练结果依然具有softmax的预测概率意义(相比之下,已有的Word2Vec负样本模型训练完之后,最后模型的输出值是没有意义的,只有词向量是有意义的。)。同时,由于共享了参数,因此词向量的更新更为充分,读者不妨多多测试这种方案。
【不可思议的Word2Vec】 4.不一样的“相似”
By 苏剑林 | 2017-05-01 | 139772位读者 | 引用相似度的定义
当用Word2Vec得到词向量后,一般我们会用余弦相似度来比较两个词的相似程度,定义为
$$\cos (\boldsymbol{x}, \boldsymbol{y}) = \frac{\boldsymbol{x}\cdot\boldsymbol{y}}{|\boldsymbol{x}|\times|\boldsymbol{y}|}$$
有了这个相似度概念,我们既可以比较任意两个词之间的相似度,也可以找出跟给定词最相近的词语。这在gensim的Word2Vec中,由most_similar函数实现。
等等!我们很快给出了相似度的计算公式,可是我们居然还没有“定义”相似!连相似都没有定义,怎么就得到了评估相似度的数学公式了呢?
要注意,这不是一个可以随意忽略的问题。很多时候我们都不知道我们干的是什么,就直接去干了。好比上一篇文章说到提取关键词,相信很多人都未曾想过,什么是关键词,难道就仅仅说关键词就是很“关键”的词?而如果想到,关键词就是用来估计文章大概讲什么的,这样我们就得到一种很自然的关键词定义
$$keywords = \mathop{\text{argmax}}_{w\in s}p(s|w)$$
进而可以用各种方法对它建模。
回到本文的主题来,相似度怎么定义呢?答案是:看场景定义所需要的相似。
【不可思议的Word2Vec】 3.提取关键词
By 苏剑林 | 2017-04-07 | 197182位读者 | 引用本文主要是给出了关键词的一种新的定义,并且基于Word2Vec给出了一个实现方案。这种关键词的定义是自然的、合理的,Word2Vec只是一个简化版的实现方案,可以基于同样的定义,换用其他的模型来实现。
说到提取关键词,一般会想到TF-IDF和TextRank,大家是否想过,Word2Vec还可以用来提取关键词?而且,用Word2Vec提取关键词,已经初步含有了语义上的理解,而不仅仅是简单的统计了,而且还是无监督的!
什么是关键词?
诚然,TF-IDF和TextRank是两种提取关键词的很经典的算法,它们都有一定的合理性,但问题是,如果从来没看过这两个算法的读者,会感觉简直是异想天开的结果,估计很难能够从零把它们构造出来。也就是说,这两种算法虽然看上去简单,但并不容易想到。试想一下,没有学过信息相关理论的同学,估计怎么也难以理解为什么IDF要取一个对数?为什么不是其他函数?又有多少读者会破天荒地想到,用PageRank的思路,去判断一个词的重要性?
说到底,问题就在于:提取关键词和文本摘要,看上去都是一个很自然的任务,有谁真正思考过,关键词的定义是什么?这里不是要你去查汉语词典,获得一大堆文字的定义,而是问你数学上的定义。关键词在数学上的合理定义应该是什么?或者说,我们获取关键词的目的是什么?
最近评论