27
Feb
纠缠的时空(二):洛仑兹变换的矩阵(续)
By 苏剑林 | 2013-02-27 | 20005位读者 | 引用在上一篇文章中,我们以矩阵的方式推导出了洛仑兹变换。矩阵表述不仅仅具有形式上的美,还具有很重要的实用价值,比如可以很方便地寻找各种不变量。当洛仑兹变换用矩阵的方式表达出来后,很多线性代数中已知的理论都可以用在上边。在这篇小小的续集中,我们将尝试阐述这个思想。
本文中,继续设光速$c=1$。
我们已经得到了洛仑兹变换的矩阵形式:
\begin{equation}\left[\begin{array}{c} x\\t \end{array}\right]=\frac{1}{\sqrt{1-v^2}}\left[\begin{array}{c c}1 & v\\ v & 1 \end{array}\right]\left[\begin{array}{c}x'\\t' \end{array}\right]\end{equation}
最近评论