狄拉克函数:级数逼近
By 苏剑林 | 2017-01-11 | 45392位读者 | 引用魏尔斯特拉斯定理
将狄拉克函数理解为函数的极限,可以衍生出很丰富的内容,而且这些内容离严格的证明并不遥远。比如,定义
$$\delta_n(x)=\left\{\begin{aligned}&\frac{(1-x^2)^n}{I_n},x\in[-1,1]\\
&0,\text{其它情形}\end{aligned}\right.$$
其中$I_n = \int_{-1}^1 (1-x^2)^n dx$,于是不难证明
$$\delta(x)=\lim_{n\to\infty}\delta_n(x)$$
这样,对于$[a,b]$上的连续函数$f(x)$,我们就得到
$$f(x)=\int_{-1}^1 f(y)\delta(x-y)dy = \lim_{n\to\infty}\int_{-1}^1 f(y)\delta_n(x-y) dy$$
这里$-1 < a < b < 1$,并且我们已经“不严谨”地交换了积分号和极限号,但这不是特别重要。重要的是它的结果:可以看到
$$P_n(x)=\int_{-1}^1 f(y)\delta_n(x-y) dy$$
是$x$的一个$2n$次多项式,因此上式表明$f(x)$是一个$2n$次的多项式的极限!这就引出了著名的“魏尔斯特拉斯定理”:
闭区间上的连续函数都可以用多项式一致地逼近。
【不可思议的Word2Vec】 1.数学原理
By 苏剑林 | 2017-04-02 | 56420位读者 | 引用对于了解深度学习、自然语言处理NLP的读者来说,Word2Vec可以说是家喻户晓的工具,尽管不是每一个人都用到了它,但应该大家都会听说过它——Google出品的高效率的获取词向量的工具。
Word2Vec不可思议?
大多数人都是将Word2Vec作为词向量的等价名词,也就是说,纯粹作为一个用来获取词向量的工具,关心模型本身的读者并不多。可能是因为模型过于简化了,所以大家觉得这样简化的模型肯定很不准确,所以没法用,但它的副产品词向量的质量反而还不错。没错,如果是作为语言模型来说,Word2Vec实在是太粗糙了。
但是,为什么要将它作为语言模型来看呢?抛开语言模型的思维约束,只看模型本身,我们就会发现,Word2Vec的两个模型 —— CBOW和Skip-Gram —— 实际上大有用途,它们从不同角度来描述了周围词与当前词的关系,而很多基本的NLP任务,都是建立在这个关系之上,如关键词抽取、逻辑推理等。这几篇文章就是希望能够抛砖引玉,通过介绍Word2Vec模型本身,以及几个看上去“不可思议”的用法,来提供一些研究此类问题的新思路。
【语料】百度的中文问答数据集WebQA
By 苏剑林 | 2017-04-12 | 221770位读者 | 引用信息抽取
众所周知,百度知道上有大量的人提了大量的问题,并且得到大量的回复。然而,百度知道上的回复者貌似懒人居多,他们往往喜欢直接在网上复制粘贴一大片来作为回答内容,而且这些内容可能跟问题相关,也可能跟问题不相关,比如
https://zhidao.baidu.com/question/557785746.html
问:广州白云山海拨多高
答:广州白云山(Guangzhou Baiyun Mountain),是新 “羊城八景”之首、国家4A级景区和国家重点风景名胜区。它位于广州市的东北部,为南粤名山之一,自古就有“羊城第一秀”之称。山体相当宽阔,由30多座山峰组成,为广东最高峰九连山的支脉。面积20.98平方公里,主峰摩星岭高382米(注:最新测绘高度为372.6米——国家测绘局,2008年),峰峦重叠,溪涧纵横,登高可俯览全市,遥望珠江。每当雨后天晴或暮春时节,山间白云缭绕,蔚为奇观,白云山之名由此得来
【语料】2500万中文三元组!
By 苏剑林 | 2017-04-24 | 88008位读者 | 引用闲聊
这两年,知识图谱、问答系统、聊天机器人等领域是越来越火了。知识图谱是一个很泛化的概念,在我看来,涉及到知识库的构建、检索、利用等机器学习相关的内容,都算知识图谱。当然,这也不是个什么定义,只是个人的直观感觉。
做知识图谱的读者都知道,三元组是结构化知识的一种方法,是做知识型问答系统的重要组成部分。对于英文领域,已经有一些较大的开源的三元组语料库,而很显然,中文目前还没有这样的语料库共享(哪怕有人爬取到了,也珍藏起来了)。笔者前段时间写了个百度百科的爬虫,爬了一段时间,抓了几百万个百度百科的词条。其中不少词条含有一些结构化的信息,直接抽取出来,就是有效的“三元组”了,可以用来做知识图谱。本文分享的三元组语料正是由此而来,共有2500万个三元组。
通用爬虫探索(三):效果展示与代码
By 苏剑林 | 2017-06-07 | 54003位读者 | 引用Linux下的误删大坑与简单的恢复技巧
By 苏剑林 | 2017-07-16 | 28575位读者 | 引用训练集、验证集和测试集的意义
By 苏剑林 | 2017-10-14 | 50180位读者 | 引用更别致的词向量模型(三):描述相关的模型
By 苏剑林 | 2017-11-19 | 117296位读者 | 引用几何词向量
上述“月老”之云虽说只是幻想,但所面临的问题却是真实的。按照传统NLP的手段,我们可以统计任意两个词的共现频率以及每个词自身的频率,然后去算它们的相关度,从而得到一个“相关度矩阵”。然而正如前面所说,这个共现矩阵太庞大了,必须压缩降维,同时还要做数据平滑,给未出现的词对的相关度赋予一个合理的估值。
在已有的机器学习方案中,我们已经有一些对庞大的矩阵降维的经验了,比如SVD和pLSA,SVD是对任意矩阵的降维,而pLSA是对转移概率矩阵$P(j|i)$的降维,两者的思想是类似的,都是将一个大矩阵$\boldsymbol{A}$分解为两个小矩阵的乘积$\boldsymbol{A}\approx\boldsymbol{B}\boldsymbol{C}$,其中$\boldsymbol{B}$的行数等于$\boldsymbol{A}$的行数,$\boldsymbol{C}$的列数等于$\boldsymbol{A}$的列数,而它们本身的大小则远小于$\boldsymbol{A}$的大小。如果对$\boldsymbol{B},\boldsymbol{C}$不做约束,那么就是SVD;如果对$\boldsymbol{B},\boldsymbol{C}$做正定归一化约束,那就是pLSA。
但是如果是相关度矩阵,那么情况不大一样,它是正定的但不是归一的,我们需要为它设计一个新的压缩方案。借鉴矩阵分解的经验,我们可以设想把所有的词都放在$n$维空间中,也就是用$n$维空间中的一个向量来表示,并假设它们的相关度就是内积的某个函数(为什么是内积?因为矩阵乘法本身就是不断地做内积):
\[\frac{P(w_i,w_j)}{P(w_i)P(w_j)}=f\big(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle\big)\tag{8}\]
其中加粗的$\boldsymbol{v}_i, \boldsymbol{v}_j$表示词$w_i,w_j$对应的词向量。从几何的角度看,我们就是把词语放置到了$n$维空间中,用空间中的点来表示一个词。
因为几何给我们的感觉是直观的,而语义给我们的感觉是复杂的,因此,理想情况下我们希望能够通过几何关系来反映语义关系。下面我们就根据我们所希望的几何特性,来确定待定的函数$f$。事实上,glove词向量的那篇论文中做过类似的事情,很有启发性,但glove的推导实在是不怎么好看。请留意,这里的观点是新颖的——从我们希望的性质,来确定我们的模型,而不是反过来有了模型再推导性质。
最近评论