12 Jan

一般来说,文本匹配有交互式(Interaction-based)和特征式(Representation-based)两种实现方案,其中交互式是指将两个文本拼接在一起当成单文本进行分类,而特征式则是指两个句子分别由编码器编码为句向量后再做简单的融合处理(算cos值或者接一个浅层网络)。通常的结论是,交互式由于使得两个文本能够进行充分的比较,所以它准确性通常较好,但明显的缺点是在检索场景的效率较差;而特征式则可以提前计算并缓存好句向量,所以它有着较高的效率,但由于句子间的交互程度较浅,所以通常效果不如交互式。

上一篇文章笔者介绍了CoSENT,它本质上也是一种特征式方案,并且相比以往的特征式方案效果有所提高。于是笔者的好胜心就上来了:CoSENT能比得过交互式吗?特征式相比交互式的差距有多远呢?本文就来做个比较。

自动阈值

在文章《CoSENT(一):比Sentence-BERT更有效的句向量方案》中,我们评测CoSENT所用的指标是Spearman系数,它是一个只依赖于预测结果相对顺序的指标,不依赖于阈值,比较适合检索场景的评测。但如果评测指标是accuracy或者F1这些分类指标,则必须确定一个阈值,将预测结果大于这个数的预测结果视为正、小于则为负,然后才能计算指标。在二分类的场景,我们用二分法就可以有效地确定这个阈值。

点击阅读全文...

25 Jan

Efficient GlobalPointer:少点参数,多点效果

《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》中,我们提出了名为“GlobalPointer”的token-pair识别模块,当它用于NER时,能统一处理嵌套和非嵌套任务,并在非嵌套场景有着比CRF更快的速度和不逊色于CRF的效果。换言之,就目前的实验结果来看,至少在NER场景,我们可以放心地将CRF替换为GlobalPointer,而不用担心效果和速度上的损失。

在这篇文章中,我们提出GlobalPointer的一个改进版——Efficient GlobalPointer,它主要针对原GlobalPointer参数利用率不高的问题进行改进,明显降低了GlobalPointer的参数量。更有趣的是,多个任务的实验结果显示,参数量更少的Efficient GlobalPointer反而还取得更好的效果。

大量的参数

这里简单回顾一下GlobalPointer,详细介绍则请读者阅读《GlobalPointer:用统一的方式处理嵌套和非嵌套NER》。简单来说,GlobalPointer是基于内积的token-pair识别模块,它可以用于NER场景,因为对于NER来说我们只需要把每一类实体的“(首, 尾)”这样的token-pair识别出来就行了。

点击阅读全文...

30 Jan

GPLinker:基于GlobalPointer的实体关系联合抽取

在将近三年前的百度“2019语言与智能技术竞赛”(下称LIC2019)中,笔者提出了一个新的关系抽取模型(参考《基于DGCNN和概率图的轻量级信息抽取模型》),后被进一步发表和命名为“CasRel”,算是当时关系抽取的SOTA。然而,CasRel提出时笔者其实也是首次接触该领域,所以现在看来CasRel仍有诸多不完善之处,笔者后面也有想过要进一步完善它,但也没想到特别好的设计。

后来,笔者提出了GlobalPointer以及近日的Efficient GlobalPointer,感觉有足够的“材料”来构建新的关系抽取模型了。于是笔者从概率图思想出发,参考了CasRel之后的一些SOTA设计,最终得到了一版类似TPLinker的模型。

基础思路

关系抽取乍看之下是三元组$(s,p,o)$(即subject, predicate, object)的抽取,但落到具体实现上,它实际是“五元组”$(s_h,s_t,p,o_h,o_t)$的抽取,其中$s_h,s_t$分别是$s$的首、尾位置,而$o_h,o_t$则分别是$o$的首、尾位置。

点击阅读全文...

21 Feb

GPLinker:基于GlobalPointer的事件联合抽取

大约两年前,笔者在百度的“2020语言与智能技术竞赛”中首次接触到了事件抽取任务,并在文章《bert4keras在手,baseline我有:百度LIC2020》中分享了一个转化为BERT+CRF做NER的简单baseline。不过,当时的baseline更像是一个用来凑数的半成品,算不上一个完整的事件抽取模型。而这两年来,关系抽取的模型层见迭出,SOTA一个接一个,但事件抽取似乎没有多亮眼的设计。

最近笔者重新尝试了事件抽取任务,在之前的关系抽取模型GPLinker的基础上,结合完全子图搜索,设计一个比较简单但相对完备的事件联合抽取模型,依然称之为GPLinker,在此请大家点评一番。

任务简介

事件抽取是一个比较综合的任务。一个标准的事件抽取样本如下:

标准的事件抽取样本(图片来自百度DuEE的GitHub)

标准的事件抽取样本(图片来自百度DuEE的GitHub)

点击阅读全文...

9 Mar

训练1000层的Transformer究竟有什么困难?

众所周知,现在的Transformer越做越大,但这个“大”通常是“宽”而不是“深”,像GPT-3虽然参数有上千亿,但也只是一个96层的Transformer模型,与我们能想象的深度相差甚远。是什么限制了Transformer往“深”发展呢?可能有的读者认为是算力,但“宽而浅”的模型所需的算力不会比“窄而深”的模型少多少,所以算力并非主要限制,归根结底还是Transformer固有的训练困难。一般的观点是,深模型的训练困难源于梯度消失或者梯度爆炸,然而实践显示,哪怕通过各种手段改良了梯度,深模型依然不容易训练。

近来的一些工作(如Admin)指出,深模型训练的根本困难在于“增量爆炸”,即模型越深对输出的扰动就越大。上周的论文《DeepNet: Scaling Transformers to 1,000 Layers》则沿着这个思路进行尺度分析,根据分析结果调整了模型的归一化和初始化方案,最终成功训练出了1000层的Transformer模型。整个分析过程颇有参考价值,我们不妨来学习一下。

增量爆炸

原论文的完整分析比较长,而且有些假设或者描述细酌之下是不够合理的。所以在本文的分享中,笔者会尽量修正这些问题,试图以一个更合理的方式来得到类似结果。

点击阅读全文...

28 Apr

在bert4keras中使用混合精度和XLA加速训练

之前笔者一直都是聚焦于模型的构思和实现,鲜有关注模型的训练加速,像混合精度和XLA这些技术,虽然也有听过,但没真正去实践过。这两天折腾了一番,成功在bert4keras中使用了混合精度和XLA来加速训练,在此做个简单的总结,供大家参考。

本文的多数经验结论并不只限于bert4keras中使用,之所以在标题中强调bert4keras,只不过bert4keras中的模型实现相对较为规整,因此启动这些加速技巧所要做的修改相对更少。

实验环境

本文的实验显卡为3090,使用的docker镜像为nvcr.io/nvidia/tensorflow:21.09-tf1-py3,其中自带的tensorflow版本为1.15.5。另外,实验所用的bert4keras版本为0.11.3。其他环境也可以参考着弄,要注意有折腾精神,不要指望着无脑调用。

顺便提一下,3090、A100等卡只能用cuda11,而tensorflow官网的1.15版本是不支持cuda11的,如果还想用tensorflow 1.x,那么只能用nvidia亲自维护的nvidia-tensorflow,或者用其构建的docker镜像。用nvidia而不是google维护的tensorflow,除了能让你在最新的显卡用上1.x版本外,还有nvidia专门做的一些额外优化,具体文档可以参考这里

点击阅读全文...

7 Jun

相对位置编码Transformer的一个理论缺陷与对策

位置编码是Transformer中很重要的一环,在《让研究人员绞尽脑汁的Transformer位置编码》中我们就总结了一些常见的位置编码设计。大体上,我们将Transformer的位置编码分为“绝对位置编码”和“相对位置编码”两类,其中“相对位置编码”在众多NLP/CV的实验表现相对来说更加好些。

然而,我们可以发现,目前相对位置编码几乎都是在Softmax之前的Attention矩阵上进行操作的,这种施加方式实际上都存在一个理论上的缺陷,使得Transformer无法成为“万能拟合器”。本文就来分析这个问题,并探讨一些解决方案。

简单探针

顾名思义,位置编码就是用来给模型补充上位置信息的。那么,如何判断一个模型有没有足够的识别位置的能力呢?笔者之前曾构思过一个简单的探针实验:

对于一个有识别位置能力的模型,应该有能力准确实现如下映射 \begin{equation}\begin{array}{lc} \text{输入:} & [0, 0, \cdots, 0, 0] \\ & \downarrow\\ \text{输出:} & [1, 2, \cdots, n-1, n] \end{array}\end{equation}

点击阅读全文...

28 Jun

“维度灾难”之Hubness现象浅析

这几天读到论文《Exploring and Exploiting Hubness Priors for High-Quality GAN Latent Sampling》,了解到了一个新的名词“Hubness现象”,说的是高维空间中的一种聚集效应,本质上是“维度灾难”的体现之一。论文借助Hubness的概念得到了一个提升GAN模型生成质量的方案,看起来还蛮有意思。所以笔者就顺便去学习了一下Hubness现象的相关内容,记录在此,供大家参考。

坍缩的球

“维度灾难”是一个很宽泛的概念,所有在高维空间中与相应的二维、三维空间版本出入很大的结论,都可以称之为“维度灾难”,比如《n维空间下两个随机向量的夹角分布》中介绍的“高维空间中任何两个向量几乎都是垂直的”。其中,有不少维度灾难现象有着同一个源头——“高维空间单位球与其外切正方体的体积之比逐渐坍缩至0”,包括本文的主题“Hubness现象”亦是如此。

点击阅读全文...