训练1000层的Transformer究竟有什么困难?
By 苏剑林 | 2022-03-09 | 74967位读者 | 引用众所周知,现在的Transformer越做越大,但这个“大”通常是“宽”而不是“深”,像GPT-3虽然参数有上千亿,但也只是一个96层的Transformer模型,与我们能想象的深度相差甚远。是什么限制了Transformer往“深”发展呢?可能有的读者认为是算力,但“宽而浅”的模型所需的算力不会比“窄而深”的模型少多少,所以算力并非主要限制,归根结底还是Transformer固有的训练困难。一般的观点是,深模型的训练困难源于梯度消失或者梯度爆炸,然而实践显示,哪怕通过各种手段改良了梯度,深模型依然不容易训练。
近来的一些工作(如Admin)指出,深模型训练的根本困难在于“增量爆炸”,即模型越深对输出的扰动就越大。上周的论文《DeepNet: Scaling Transformers to 1,000 Layers》则沿着这个思路进行尺度分析,根据分析结果调整了模型的归一化和初始化方案,最终成功训练出了1000层的Transformer模型。整个分析过程颇有参考价值,我们不妨来学习一下。
增量爆炸
原论文的完整分析比较长,而且有些假设或者描述细酌之下是不够合理的。所以在本文的分享中,笔者会尽量修正这些问题,试图以一个更合理的方式来得到类似结果。
为什么需要残差?一个来自DeepNet的视角
By 苏剑林 | 2022-03-19 | 57980位读者 | 引用在《训练1000层的Transformer究竟有什么困难?》中我们介绍了微软提出的能训练1000层Transformer的DeepNet技术。而对于DeepNet,读者一般也有两种反应,一是为此感到惊叹而点赞,另一则是觉得新瓶装旧酒没意思。出现后一种反应的读者,往往是因为DeepNet所提出的两个改进点——增大恒等路径权重和降低残差分支初始化——实在过于稀松平常,并且其他工作也出现过类似的结论,因此很难有什么新鲜感。
诚然,单从结论来看,DeepNet实在算不上多有意思,但笔者觉得,DeepNet的过程远比结论更为重要,它有意思的地方在于提供了一个简明有效的梯度量级分析思路,并可以用于分析很多相关问题,比如本文要讨论的“为什么需要残差”,它就可以给出一个比较贴近本质的答案。
增量爆炸
为什么需要残差?答案是有了残差才更好训练深层模型,这里的深层可能是百层、千层甚至万层。那么问题就变成了为什么没有残差就不容易训练深层模型呢?
基于Amos优化器思想推导出来的一些“炼丹策略”
By 苏剑林 | 2022-11-22 | 31086位读者 | 引用如果将训练模型比喻为“炼丹”,那么“炼丹炉”显然就是优化器了。据传AdamW优化器是当前训练神经网络最快的方案,这一点笔者也没有一一对比过,具体情况如何不得而知,不过目前做预训练时多数都用AdamW或其变种LAMB倒是真的。然而,正如有了炼丹炉也未必能炼出好丹,即便我们确定了选择AdamW优化器,依然有很多问题还没有确定的答案,比如:
1、学习率如何适应不同初始化和参数化?
2、权重衰减率该怎么调?
3、学习率应该用什么变化策略?
4、能不能降低优化器的显存占用?
尽管在实际应用时,我们大多数情况下都可以直接套用前人已经调好的参数和策略,但缺乏比较系统的调参指引,始终会让我们在“炼丹”之时感觉没有底气。在这篇文章中,我们基于Google最近提出的Amos优化器的思路,给出一些参考结果。
生成扩散模型漫谈(十五):构建ODE的一般步骤(中)
By 苏剑林 | 2022-12-22 | 28212位读者 | 引用上周笔者写了《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀),本以为已经窥见了构建ODE扩散模型的一般规律,结果不久后评论区大神 @gaohuazuo 就给出了一个构建格林函数更高效、更直观的方案,让笔者自愧不如。再联想起之前大神之前在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》同样也给出了一个关于扩散ODE的精彩描述(间接启发了上一篇博客的结果),大神的洞察力不得不让人叹服。
经过讨论和思考,笔者发现大神的思路本质上就是一阶偏微分方程的特征线法,通过构造特定的向量场保证初值条件,然后通过求解微分方程保证终值条件,同时保证了初值和终值条件,真的非常巧妙!最后,笔者将自己的收获总结成此文,作为上一篇的后续。
前情回顾
简单回顾一下上一篇文章的结果。假设随机变量$\boldsymbol{x}_0\in\mathbb{R}^d$连续地变换成$\boldsymbol{x}_T$,其变化规律服从ODE
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq-ode}\end{equation}
生成扩散模型漫谈(十四):构建ODE的一般步骤(上)
By 苏剑林 | 2022-12-15 | 54209位读者 | 引用书接上文,在《生成扩散模型漫谈(十三):从万有引力到扩散模型》中,我们介绍了一个由万有引力启发的、几何意义非常清晰的ODE式生成扩散模型。有的读者看了之后就疑问:似乎“万有引力”并不是唯一的选择,其他形式的力是否可以由同样的物理绘景构建扩散模型?另一方面,该模型在物理上确实很直观,但还欠缺从数学上证明最后确实能学习到数据分布。
本文就尝试从数学角度比较精确地回答“什么样的力场适合构建ODE式生成扩散模型”这个问题。
基础结论
要回答这个问题,需要用到在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中我们推导过的一个关于常微分方程对应的分布变化的结论。
考虑$\boldsymbol{x}_t\in\mathbb{R}^d, t\in[0,T]$的一阶(常)微分方程(组)
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
Google新作试图“复活”RNN:RNN能否再次辉煌?
By 苏剑林 | 2023-03-28 | 57360位读者 | 引用当前,像ChatGPT之类的LLM可谓是“风靡全球”。有读者留意到,几乎所有LLM都还是用最初的Multi-Head Scaled-Dot Attention,近年来大量的Efficient工作如线性Attention、FLASH等均未被采用。是它们版本效果太差,还是根本没有必要考虑效率?其实答案笔者在《线性Transformer应该不是你要等的那个模型》已经分析过了,只有序列长度明显超过hidden size时,标准Attention才呈现出二次复杂度,在此之前它还是接近线性的,它的速度比很多Efficient改进都快,而像GPT3用到了上万的hidden size,这意味着只要你的LLM不是面向数万长度的文本生成,那么用Efficient改进是没有必要的,很多时候速度没提上去,效果还降低了。
那么,真有数万甚至数十万长度的序列处理需求时,我们又该用什么模型呢?近日,Google的一篇论文《Resurrecting Recurrent Neural Networks for Long Sequences》重新优化了RNN模型,特别指出了RNN在处理超长序列场景下的优势。那么,RNN能否再次辉煌?
Transformer升级之路:15、Key归一化助力长度外推
By 苏剑林 | 2023-11-20 | 52575位读者 | 引用大体上,我们可以将目前Transformer的长度外推技术分为两类:一类是事后修改,比如NTK-RoPE、YaRN、ReRoPE等,这类方法的特点是直接修改推理模型,无需微调就能达到一定的长度外推效果,但缺点是它们都无法保持模型在训练长度内的恒等性;另一类自然是事前修改,如ALIBI、KERPLE、XPOS以及HWFA等,它们可以不加改动地实现一定的长度外推,但相应的改动需要在训练之前就引入,因此无法不微调地用于现成模型,并且这类方法是否能够Scale Up还没得到广泛认可。
在这篇文章中,笔者将介绍一种意外发现的长度外推方案——“KeyNorm”——对Attention的Key序列做L2 Normalization,很明显它属于事前修改一类,但对Attention机制的修改非常小,因此看上去非常有希望能够Scale Up。
最初动机
之所以说“意外发现”,是因为该改动的原始动机并不是长度外推,而是尝试替换Scaled Dot-Product Attention中的Scale方式。我们知道,Attention的标准定义是(本文主要考虑Causal场景)
\begin{equation}\boldsymbol{o}_i = \frac{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)\boldsymbol{v}_j}{\sum_{j = 1}^i\exp\left(\frac{\boldsymbol{q}_i\cdot \boldsymbol{k}_j}{\sqrt{d}}\right)},\quad \boldsymbol{q}_i,\boldsymbol{k}_j\in\mathbb{R}^d\label{eq:sdpa}\end{equation}
VQ一下Key,Transformer的复杂度就变成线性了
By 苏剑林 | 2023-11-09 | 64687位读者 | 引用Efficient Transformer,泛指一切致力于降低Transformer的二次复杂度的工作,开始特指针对Attention的改进,后来更一般的思路,如傅里叶变换、线性RNN等,也被归入这个范畴。不得不说,为了降低Transformer的二次复杂度,各路大牛可谓是“八仙过海,各显神通”,各种神奇的思路“百花齐放”,笔者也从中学习到了不少理论知识。然而,尽管Efficient Transformer在理论上是精彩的,但实际上该领域一直都是不愠不火的状态,并没有实际表现十分出色的模型,在LLM火爆的今天,甚至已经逐渐淡出了大家的视野,也淡出了笔者的兴趣范围。
不过,最近有一篇论文《Transformer-VQ: Linear-Time Transformers via Vector Quantization》,却让笔者为之拍案叫绝。作者非常高明地洞察到,只需要对标准Attention的Key做一下VQ(Vector Quantize),复杂度就会自动降低为线性!这种线性化思路保留了标准Attention的形式,是标准Attention到线性Attention的一个完美过渡,同时最大程度上保留了标准Attention的能力。
高效难题
说起来,本站也算是比较早关注Efficient Transformer相关工作了,最早可以追溯到2019年解读Sparse Transformer的一篇博客《为节约而生:从标准Attention到稀疏Attention》。此后,陆续写的关于Efficient Transformer的其他博文还有
最近评论