26 Apr

高斯型积分的微扰展开(三)

换一个小参数

比较《高斯型积分的微扰展开(一)》《高斯型积分的微扰展开(二)》两篇文章,我们可以得出关于积分
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\tag{1}$$
的两个结论:第一,我们发现类似$(4)$式的近似结果具有良好的性质,对任意的$\varepsilon$都能得到一个相对靠谱的近似;第二,我们发现在指数中逐阶展开,得到的级数效果会比直接展开为幂级数的效果要好。那么,两者能不能结合起来呢?

我们将$(4)$式改写成
$$\int_{-\infty}^{+\infty} e^{-ax^2-\varepsilon x^4} dx\approx\sqrt{\frac{2\pi}{a+\sqrt{a^2+6 \varepsilon}}}=\sqrt{\frac{\pi}{a+\frac{1}{2}\left(\sqrt{a^2+6 \varepsilon}-a\right)}}\tag{6}$$

点击阅读全文...

30 May

【备忘】维基百科与DNSCrypt

中文维基百科的域名zh.wikipedia.org于5月19日被关键字屏蔽和DNS污染,目前从中国已无法访问中文维基百科,中文维基百科的域名也无法解析出正确的IP地址,而英文维基百科目前未受影响,可以正常访问。

来自“月光博客”:http://www.williamlong.info/archives/4240.html

类似的新闻还有:http://www.freebuf.com/news/68011.html

点击阅读全文...

21 Jul

从“0.999...等于1”说开来

从小学到大学都可能被问到的但却又不容易很好地回答的问题中,“0.999...究竟等不等于1”肯定也算是相当经典的一个。然而,要清楚地回答这个问题并不容易,很多时候被提问者都会不自觉地弄晕,甚至有些“民科”还以这个问题“创造了新数学”。

本文试图就这个问题,给出比较通俗但比较严谨的回答。

什么是相等?

要回答0.999...等不等于1,首先得定义“相等”!什么才算相等?难道真的要写出来一模一样才叫相等吗?如果是这样的话,那么2-1都不等于1了,因为2-1跟1看起来都不一样啊。

显然我们需要给“相等”做出比较严格但是又让人公认的定义,才能对相等进行判断,显然,下面的定义是能够让很多人接受的:

$a = b$等切仅当$|a-b|=0$。

点击阅读全文...

21 Oct

把Python脚本放到手机上定时运行

毫无疑问,数据是数据分析的基础,而对于我等平民来说,获取大量数据的方式自然是通过爬虫采集,而对于笔者来说,写爬虫最自然的方式就是用Python写了。短短几行代码,就可以完成一个实用的爬虫,多清爽。(请参考:《记录一次爬取淘宝/天猫评论数据的过程》

爬虫要住在哪里?

接下来的一个问题是,这个爬虫放到哪里运行?为了爬取每天更新的数据,往往需要每天都要运行一次爬虫,特别地,是在某个点定时运行。这样的话,老挂在自己的电脑运行是不大现实,因为自己的电脑总有关机的时候。也许有读者会想到放在云服务器里边,这是个方法,但是需要额外的成本。受到小虾大神的启发,我开始想把它放到路由器里边运行,某些比较好的路由器是可以外接U盘,且可以刷open-wrt系统的(一个Linux内核的路由器系统,可以像普通Linux那样装Python)。这对我来说是一种很吸引人的做法,但是我对Linux环境下的编译并不熟悉,尤其是路由器环境下的操作;另外路由器配置很低,一般都只是16M闪存、64M内存,如果没有耐心,那么是很难受得了的。

点击阅读全文...

7 Dec

一阶偏微分方程的特征线法

本文以尽可能清晰、简明的方式来介绍了一阶偏微分方程的特征线法。个人认为这是偏微分方程理论中较为简单但事实上又容易让人含糊的一部分内容,因此尝试以自己的文字来做一番介绍。当然,更准确来说其实是笔者自己的备忘。

拟线性情形

一般步骤

考虑偏微分方程
$$\begin{equation}\boldsymbol{\alpha}(\boldsymbol{x},u) \cdot \frac{\partial}{\partial \boldsymbol{x}} u = \beta(\boldsymbol{x},u)\end{equation}$$
其中$\boldsymbol{\alpha}$是一个$n$维向量函数,$\beta$是一个标量函数,$\cdot$是向量的点积,$u\equiv u(\boldsymbol{x})$是$n$元函数,$\boldsymbol{x}$是它的自变量。

点击阅读全文...

2 Nov

Python配置与连接网络(Win,科学上网)

本文的内容在Windows系统下有效,笔者的系统为Windows 10,其他Windows系统也类似。严格来讲,本文只是给自己的备忘录,而其中很多内容,对于已经有一定基础的读者,自然一点就通;而对于没有基础的读者,本文并不适合您作为入门教程。

如今在国内访问google的方式可谓五花八门,比较易用的诸如谷粉搜搜(迫于压力已经关闭)、红杏谷歌、谷歌吾爱等外挂于google之上的网站,当然,如果要访问原汁原味的google,就只能够通过“科学上网”(fan qiang)了。然而类似goagent之类的软件并不稳定,而且速度也一般,那么剩下来的方式基本就只有vpn了。可是选择vpn也是个头疼的事情,十几块钱一个月并不算贵,但总让人担心这个vpn会不会哪一天就被封了,浪费总让人心疼。所以还是简简单单,找个免费的vpn用用吧,虽然速度可能不好,但是将就用着,毕竟踏实。

最近在网上看到一种免费vpn,它每次连接只能连接一小时,每小时自动断开,并且自动修改密码(密码发布在它们的网页上)。经过测试,那速度还能满足日常所需。(如有需要,请自己搜索~~)

点击阅读全文...

7 Feb

年三十折腾极路由之SSH反向代理

猴年快乐!

猴年快乐!

今天是年三十了,这里简单祝大家除夕快乐,新年快乐!愿大家在新的一年里都晋升为学神。^_^

这两天主要在折腾家里的路由器。平时家里只有爸妈两人,所以为了节省,家里只是通过中继隔壁家的网络来上网。本来家里用小米路由器mini,可是小米mini中继模式下功能限制非常多,我又不想刷第三方固件(因为这样会失去app控制功能,不是很方便),所以干脆换了个极路由3。极路由在中继模式下仍然保留了大部分功能(我觉得这样才是正常的,我不理解小米mini在中继之后就没了那么多功能究竟是什么逻辑)。

作为折腾派,一个新路由到手,总有很多东西要配置,极路由本身是基于openwrt的,因此可玩性也很强。首先要完成中继,然后上网,这个很简单就不多说了。其次是获得ssh权限,在极路由那里叫做“申请开发者模式”,或者叫root(感觉极路由想做路由界的苹果,但是在如今这个时代,苹果当初那种发展模式估计很难发展起来了),这个步骤也不难,不过申请之后就会失去极路由的保修资格(不理解这是什么逻辑)。

本文主要介绍了怎么在openwrt(极路由)上安装python,以及建立SSH反向代理(实现内网穿透)。

点击阅读全文...

1 Apr

《量子力学与路径积分》习题解答V0.5

习题解答继续艰难推进中,目前是0.5版本,相比0.4版,跳过了8、9章,先做了第10、11章统计力学部分的习题。

第10章有10道习题,第11章其实没有习题。看上去很少,但其实每一道习题的难度都很大。这两章的主要内容都是在用路径积分方法算统计力学中的配分函数,这本来就是一个很艰辛的课题。加上费曼在书中那形象的描述,容易让读者能够认识到大概,但是却很难算下去。事实上,这一章的习题,我参考了相当多的资料,中文的、英文的都有,才勉强完成了。

虽说是完成,但10道题目中,我只完成了9道,其中问题10-3是有困惑的,我感觉的结果跟费曼给出的不一样,因此就算不下去了。在这里提出来,希望了解的读者赐教。

点击阅读全文...