14 Dec

关于“微分”的理解

我从来不想在教科书上的定义上纠结太多,因为我知道,真正对定义的理解,需要在长期的实践应用中慢慢感悟的,所以我们唯一需要做的是继续我们的研究。

但是前些天有些朋友问到我关于微分的理解,比如“dx是不是一定很小”等等,所以决定在此写写我的理解。

与微分联系很紧密的,也是我们很熟悉的东西,当然是“增量 ”啦,比如$\Delta y$、$\Delta x$等等,增量显然是可以任意大的(只要自变量还在定义域内)。那么考虑一个函数$y=f(x)$,函数的微分是怎么出现的呢?那是因为我们直接研究函数的增量是比较麻烦的,所以就引入了微分dy,当$\Delta x$很小时,它代表增量的主项:$\Delta y=dy+o(\Delta x)=A \Delta x+o(\Delta x)$,A是一个常数。

点击阅读全文...

27 Dec

费曼路径积分思想的发展(三)

3、费曼图和量子电动力学的重整化

在1947年美国避难岛(Shelter Island)会议上,兰姆报导了他的重大发现,即现今所称的兰姆位移;氢原子的$2S_{\frac{1}{2}}$能级比$2P_{\frac{1}{2}}$高出约1000MHz。而按照狄拉克理论,对纯库仑相互作用的电子-质子系统,这两个能级应该是简并的。人们很快就认识到,该位移应归之于一阶近似的辐射校正[19]。贝特用一个电子的校正质量就非相对论近似得出了氢原子nS能级的位移公:

$$\frac{8}{3\pi}(\frac{e^2}{\hbar c})Ry \frac{Z^4}{n^3} Ln\frac{K}{ < E_n-E_m > _{AV}}$$

点击阅读全文...

16 Jan

新科学家:割裂时间空间,统一相对论量子论

这篇文章源于《新科学家》2010年8月7日刊,它介绍了物理学家Horava为了统一相对论和量子力学,把广义相对论的时空联系割裂的尝试。在相对论中,时间和空间结合成了不可分割的整体。而现在,有物理学家却要把时间与空间分开,来建立让广义相对论和量子力学相调和的统一理论。我对这个理论挺感兴趣的,当然,我还没有能力弄懂它。只是它符合了我们大多数人的一个直觉,就是时间总有跟空间不同的地方,它们之间不应该完全等同起来。不过,事实如何,只有未来的实验能够严重了。

本文并没有官方的中文译文,现载的译文来自“译言网”。译文有一些翻译不大正当的地方,由于时间限制,无法一一修正,但是我觉得对于理解本文内容已经足够了。如果有疑问,不妨参考后边的英文原文,并在此提出与大家讨论。

对爱因斯坦的反思:空间-时间耦合的物理数学的终结

纠结于融合引力和量子力学的物理学家们正向着一个受到铅笔芯启发的理论欢呼雀跃,这个理论可以很简单地让他们取得成功。

它曾是一个改变了我们思考空间和时间的方式的报告。那一年是1908年,德国数学家赫尔曼-闵可夫斯基正尝试着理解爱因斯坦火热的新思想——即我们现在所熟知的狭义相对论,它描述当物质运动很快时它们是如何收缩以及时间是如何扭曲的。“从此独立的空间和时间将注定淡出到纯粹的虚幻中,”闵可夫斯基说道:“而只有两者的统一才能保证一个独立的现实世界。”

点击阅读全文...

1 Feb

大学,如水年华

小时候总是听到“光阴似箭”,却总是觉得时间过得飞快,尤其是放假的时间迟迟不来。而现在,随着年龄的增长,我却发现,想要留住时间,如同抽刀断水一般,无济于事。尤其是美好的时刻,稍瞬即逝。大学,上学、军训的情况依然清晰在目,犹如发生在昨天,而现在已经是寒假了。有时我会怀疑是不是我的记忆力增强了,却发现没有这回事。原来,真相只有一个:光阴似箭!

我不喜欢仔细地规划自己的人生,因为未来太多未知了,也许你今天发现这方面很有趣,明天又会发现另一方面很有趣,所以我只知道我尽力做好当前喜欢做的事情就行。因此,在上大学之前,我也没有对大学想太多。想象中的大学是一个静静自修的教室加上一个丰富的图书馆而已。来到华师,确实有点意外,也有点遗憾,但是,仅此而已。虽然以前努力过要奔向更优秀的大学,但是这已经成为我宝贵的经验。以后在和朋友聊天时,我又多了一个话题。这不得不说是一件很美妙的事情!

点击阅读全文...

4 Feb

[问题解答]双曲线上的最短距离

昨天晚上一位网友与我讨论以下问题:

函数$y=\sqrt{3} x-\frac{1}{x}$的图像为双曲线,在此双曲线的两支上分别取P、Q点,求PQ的最短距离。

显然,如果双曲线是普通的$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的形式,则这个问题是相当简单的。就是当y=0时两个点的距离,也就是2a。但是很明显这样的一条双曲线是经过旋转的。因此我们需要知道它究竟旋转了多少度$\theta$。然后列出$y=(\tan\theta) x$,联立双曲线方程就可以求出两个点了。

点击阅读全文...

18 Feb

[问题解答]有多少个5?

今天早上子瑞给我发了一个问题来,他说:

一个数,各个数字加起来等于104,乘以2后各个数字加起来等于100,已知这个数字没有9,有4个8、3个7和2个6,问这个数字有多少个5?

当然这道题目不难,稍加分析就可以得出答案,不过不得不说这是一道趣题,而且更像一个数字游戏。

点击阅读全文...

24 Mar

费曼积分法(5):欧拉数学的传承

在大学第二学期,我们的《数学分析》终于龟速地爬行到了定积分这一章节。对于一些比较复杂的定积分,我总想用自己的方法来解决它,这就重新燃起了我对“费曼积分法——积分符号内取微分”的热情。尤其是我用费曼积分法解决了几道比较有趣复杂的定积分问题时,成就感高涨,遂在此总结,与大家共勉。

这和欧拉数学有什么关系呢?之前已经提到过,欧拉数学是用一种不严谨却极具创造性的方式,给予我们对数学的介乎感性和理性的直观理解。我觉得费曼积分法也属于这个范畴内,它着眼于用一种特殊的视角解决问题,而暂时忽略掉数学严密性。在读费曼的故事中,我感觉到这种思想是贯穿他一生的研究之中的。

本文继续对费曼积分法的研究,得出一些不是很严谨的结论,为以后的应用奠下基础。

一、不成立的函数

首先我们重新考虑$\int_0^{\infty} \frac{\sin x}{x}dx$。这一次我们将它引入复数范畴内,考虑:
$$\int_0^{\infty}\frac{\cos x+i \sin x}{x}dx=\int_0^{\infty}\frac{e^{ix}}{x}dx$$

点击阅读全文...

24 Mar

费曼积分法(6):教科书上的两道练习题

我们的《数学分析》教程上有两道比较有趣的定积分,经测试可以用费曼积分法的思路解决。

$$\begin{aligned}\int_0^1 \frac{\ln(1+x)}{1+x^2}dx \\ \int_0^{\pi} \frac{x \sin x}{1+\cos^2 x}dx\end{aligned}$$

No.1

点击阅读全文...