从马尔科夫过程到主方程(推导过程)
By 苏剑林 | 2017-10-06 | 73602位读者 | 引用主方程(master equation)是对随机过程进行建模的重要方法,它代表着马尔科夫过程的微分形式,我们的专业主要工具之一就是主方程,说宏大一点,量子力学和统计力学等也不外乎是主方程的一个特例。
然而,笔者阅读了几个著作,比如《统计物理现代教程》,还有我导师的《生物系统的随机动力学》,我发现这些著作对于主方程的推导都很模糊,他们在着力解释结果的意义,但并不说明结果的思想来源,因此其过程难以让人信服。而知乎上有人提问《如何理解马尔科夫过程的主方程的推导过程?》但没有得到很好的答案,也表明了这个事实。
马尔可夫过程
主方程是用来描述马尔科夫过程的,而马尔科夫过程可以理解为运动的无记忆性,说通俗点,就是下一刻的概率分布,只跟当前时刻有关,跟历史状态无关。用概率公式写出来就是(这里只考虑连续型概率,因此这里的$p$是概率密度):
$$\begin{equation}\label{eq:maerkefu}p(x,\tau)=\int p(x,\tau|y,t) p(y,t) dy\end{equation}$$
这里的积分区域是全空间。这里的$p(x,\tau|y,t)$称为跃迁概率,即已经确定了$t$时刻来到了$y$位置后、在$\tau$时刻达到$x$的概率密度,这个式子的物理意义是很明显的,就不多做解释了。
训练集、验证集和测试集的意义
By 苏剑林 | 2017-10-14 | 50329位读者 | 引用更别致的词向量模型(五):有趣的结果
By 苏剑林 | 2017-11-19 | 87361位读者 | 引用最后,我们来看一下词向量模型$(15)$会有什么好的性质,或者说,如此煞费苦心去构造一个新的词向量模型,会得到什么回报呢?
模长的含义
似乎所有的词向量模型中,都很少会关心词向量的模长。有趣的是,我们上述词向量模型得到的词向量,其模长还能在一定程度上代表着词的重要程度。我们可以从两个角度理解这个事实。
在一个窗口内的上下文,中心词重复出现概率其实是不大的,是一个比较随机的事件,因此可以粗略地认为
\[P(w,w) \sim P(w)\tag{24}\]
所以根据我们的模型,就有
\[e^{\langle\boldsymbol{v}_{w},\boldsymbol{v}_{w}\rangle} =\frac{P(w,w)}{P(w)P(w)}\sim \frac{1}{P(w)}\tag{25}\]
所以
\[\Vert\boldsymbol{v}_{w}\Vert^2 \sim -\log P(w)\tag{26}\]
可见,词语越高频(越有可能就是停用词、虚词等),对应的词向量模长就越小,这就表明了这种词向量的模长确实可以代表词的重要性。事实上,$-\log P(w)$这个量类似IDF,有个专门的名称叫ICF,请参考论文《TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams》。
更别致的词向量模型(四):模型的求解
By 苏剑林 | 2017-11-19 | 51941位读者 | 引用损失函数
现在,我们来定义loss,以便把各个词向量求解出来。用$\tilde{P}$表示$P$的频率估计值,那么我们可以直接以下式为loss
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle-\log\frac{\tilde{P}(w_i,w_j)}{\tilde{P}(w_i)\tilde{P}(w_j)}\right)^2\tag{16}\]
相比之下,无论在参数量还是模型形式上,这个做法都比glove要简单,因此称之为simpler glove。glove模型是
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log X_{ij}\right)^2\tag{17}\]
在glove模型中,对中心词向量和上下文向量做了区分,然后最后模型建议输出的是两套词向量的求和,据说这效果会更好,这是一个比较勉强的trick,但也不是什么毛病。
\[\begin{aligned}&\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log \tilde{P}(w_i,w_j)\right)^2\\
=&\sum_{w_i,w_j}\left[\langle \boldsymbol{v}_i+\boldsymbol{c}, \boldsymbol{\hat{v}}_j+\boldsymbol{c}\rangle+\Big(b_i-\langle \boldsymbol{v}_i, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)\right.\\
&\qquad\qquad\qquad\qquad\left.+\Big(\hat{b}_j-\langle \boldsymbol{\hat{v}}_j, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)-\log X_{ij}\right]^2\end{aligned}\tag{18}\]
这就是说,如果你有了一组解,那么你将所有词向量加上任意一个常数向量后,它还是一组解!这个问题就严重了,我们无法预估得到的是哪组解,一旦加上的是一个非常大的常向量,那么各种度量都没意义了(比如任意两个词的cos值都接近1)。事实上,对glove生成的词向量进行验算就可以发现,glove生成的词向量,停用词的模长远大于一般词的模长,也就是说一堆词放在一起时,停用词的作用还明显些,这显然是不利用后续模型的优化的。(虽然从目前的关于glove的实验结果来看,是我强迫症了一些。)
互信息估算
《Attention is All You Need》浅读(简介+代码)
By 苏剑林 | 2018-01-06 | 870706位读者 | 引用2017年中,有两篇类似同时也是笔者非常欣赏的论文,分别是FaceBook的《Convolutional Sequence to Sequence Learning》和Google的《Attention is All You Need》,它们都算是Seq2Seq上的创新,本质上来说,都是抛弃了RNN结构来做Seq2Seq任务。
这篇博文中,笔者对《Attention is All You Need》做一点简单的分析。当然,这两篇论文本身就比较火,因此网上已经有很多解读了(不过很多解读都是直接翻译论文的,鲜有自己的理解),因此这里尽可能多自己的文字,尽量不重复网上各位大佬已经说过的内容。
序列编码
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列。这样一来,每个句子都对应的是一个矩阵$\boldsymbol{X}=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_t)$,其中$\boldsymbol{x}_i$都代表着第$i$个词的词向量(行向量),维度为$d$维,故$\boldsymbol{X}\in \mathbb{R}^{n\times d}$。这样的话,问题就变成了编码这些序列了。
第一个基本的思路是RNN层,RNN的方案很简单,递归式进行:
\begin{equation}\boldsymbol{y}_t = f(\boldsymbol{y}_{t-1},\boldsymbol{x}_t)\end{equation}
不管是已经被广泛使用的LSTM、GRU还是最近的SRU,都并未脱离这个递归框架。RNN结构本身比较简单,也很适合序列建模,但RNN的明显缺点之一就是无法并行,因此速度较慢,这是递归的天然缺陷。另外我个人觉得RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程。
揭开迷雾,来一顿美味的Capsule盛宴
By 苏剑林 | 2018-01-23 | 439794位读者 | 引用由深度学习先驱Hinton开源的Capsule论文《Dynamic Routing Between Capsules》,无疑是去年深度学习界最热点的消息之一。得益于各种媒体的各种吹捧,Capsule被冠以了各种神秘的色彩,诸如“抛弃了梯度下降”、“推倒深度学习重来”等字眼层出不穷,但也有人觉得Capsule不外乎是一个新的炒作概念。
本文试图揭开让人迷惘的云雾,领悟Capsule背后的原理和魅力,品尝这一顿Capsule盛宴。同时,笔者补做了一个自己设计的实验,这个实验能比原论文的实验更有力说明Capsule的确产生效果了。
菜谱一览:
1、Capsule是什么?
2、Capsule为什么要这样做?
3、Capsule真的好吗?
4、我觉得Capsule怎样?
5、若干小菜。
再来一顿贺岁宴:从K-Means到Capsule
By 苏剑林 | 2018-02-12 | 222298位读者 | 引用在本文中,我们再次对Capsule进行一次分析。
整体上来看,Capsule算法的细节不是很复杂,对照着它的流程把Capsule用框架实现它基本是没问题的。所以,困难的问题是理解Capsule究竟做了什么,以及为什么要这样做,尤其是Dynamic Routing那几步。
为什么我要反复对Capsule进行分析?这并非单纯的“炒冷饭”,而是为了得到对Capsule原理的理解。众所周知,Capsule给人的感觉就是“有太多人为约定的内容”,没有一种“虽然我不懂,但我相信应该就是这样”的直观感受。我希望尽可能将Capsule的来龙去脉思考清楚,使我们能觉得Capsule是一个自然、流畅的模型,甚至对它举一反三。
在《揭开迷雾,来一顿美味的Capsule盛宴》中,笔者先分析了动态路由的结果,然后指出输出是输入的某种聚类,这个“从结果到原因”的过程多多少少有些望文生义的猜测成分;这次则反过来,直接确认输出是输入的聚类,然后反推动态路由应该是怎样的,其中含糊的成分大大减少。两篇文章之间有一定的互补作用。
三味Capsule:矩阵Capsule与EM路由
By 苏剑林 | 2018-03-02 | 214197位读者 | 引用事实上,在论文《Dynamic Routing Between Capsules》发布不久后,一篇新的Capsule论文《Matrix Capsules with EM Routing》就已经匿名公开了(在ICLR 2018的匿名评审中),而如今作者已经公开,他们是Geoffrey Hinton, Sara Sabour, Nicholas Frosst。不出大家意料,作者果然有Hinton。
大家都知道,像Hinton这些“鼻祖级”的人物,发表出来的结果一般都是比较“重磅”的。那么,这篇新论文有什么特色呢?
在笔者的思考过程中,文章《Understanding Matrix capsules with EM Routing 》给了我颇多启示,知乎上各位大神的相关讨论也加速了我的阅读,在此表示感谢。
论文摘要
让我们先来回忆一下上一篇介绍《再来一顿贺岁宴:从K-Means到Capsule》中的那个图
这个图表明,Capsule事实上描述了一个建模的框架,这个框架中的东西很多都是可以自定义的,最明显的是聚类算法,可以说“有多少种聚类算法就有多少种动态路由”。那么这次Hinton修改了什么呢?总的来说,这篇新论文有以下几点新东西:
1、原来用向量来表示一个Capsule,现在用矩阵来表示;
2、聚类算法换成了GMM(高斯混合模型);
3、在实验部分,实现了Capsule版的卷积。
最近评论