更别致的词向量模型(一):simpler glove
By 苏剑林 | 2017-11-19 | 42089位读者 | 引用如果问我哪个是最方便、最好用的词向量模型,我觉得应该是word2vec,但如果问我哪个是最漂亮的词向量模型,我不知道,我觉得各个模型总有一些不足的地方。且不说试验效果好不好(这不过是评测指标的问题),就单看理论也没有一个模型称得上漂亮的。
本文讨论了一些大家比较关心的词向量的问题,很多结论基本上都是实验发现的,缺乏合理的解释,包括:
如果去构造一个词向量模型?
为什么用余弦值来做近义词搜索?向量的内积又是什么含义?
词向量的模长有什么特殊的含义?
为什么词向量具有词类比性质?(国王-男人+女人=女王)
得到词向量后怎么构建句向量?词向量求和作为简单的句向量的依据是什么?
这些讨论既有其针对性,也有它的一般性,有些解释也许可以直接迁移到对glove模型和skip gram模型的词向量性质的诠释中,读者可以自行尝试。
围绕着这些问题的讨论,本文提出了一个新的类似glove的词向量模型,这里称之为simpler glove,并基于斯坦福的glove源码进行修改,给出了本文的实现,具体代码在Github上。
更别致的词向量模型(四):模型的求解
By 苏剑林 | 2017-11-19 | 51723位读者 | 引用损失函数
现在,我们来定义loss,以便把各个词向量求解出来。用$\tilde{P}$表示$P$的频率估计值,那么我们可以直接以下式为loss
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{v}_j\rangle-\log\frac{\tilde{P}(w_i,w_j)}{\tilde{P}(w_i)\tilde{P}(w_j)}\right)^2\tag{16}\]
相比之下,无论在参数量还是模型形式上,这个做法都比glove要简单,因此称之为simpler glove。glove模型是
\[\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log X_{ij}\right)^2\tag{17}\]
在glove模型中,对中心词向量和上下文向量做了区分,然后最后模型建议输出的是两套词向量的求和,据说这效果会更好,这是一个比较勉强的trick,但也不是什么毛病。
\[\begin{aligned}&\sum_{w_i,w_j}\left(\langle \boldsymbol{v}_i, \boldsymbol{\hat{v}}_j\rangle+b_i+\hat{b}_j-\log \tilde{P}(w_i,w_j)\right)^2\\
=&\sum_{w_i,w_j}\left[\langle \boldsymbol{v}_i+\boldsymbol{c}, \boldsymbol{\hat{v}}_j+\boldsymbol{c}\rangle+\Big(b_i-\langle \boldsymbol{v}_i, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)\right.\\
&\qquad\qquad\qquad\qquad\left.+\Big(\hat{b}_j-\langle \boldsymbol{\hat{v}}_j, \boldsymbol{c}\rangle - \frac{|\boldsymbol{c}|^2}{2}\Big)-\log X_{ij}\right]^2\end{aligned}\tag{18}\]
这就是说,如果你有了一组解,那么你将所有词向量加上任意一个常数向量后,它还是一组解!这个问题就严重了,我们无法预估得到的是哪组解,一旦加上的是一个非常大的常向量,那么各种度量都没意义了(比如任意两个词的cos值都接近1)。事实上,对glove生成的词向量进行验算就可以发现,glove生成的词向量,停用词的模长远大于一般词的模长,也就是说一堆词放在一起时,停用词的作用还明显些,这显然是不利用后续模型的优化的。(虽然从目前的关于glove的实验结果来看,是我强迫症了一些。)
互信息估算
分享一个slide:花式自然语言处理
By 苏剑林 | 2018-01-23 | 81567位读者 | 引用现在可以用Keras玩中文GPT2了(GPT2_ML)
By 苏剑林 | 2020-03-16 | 92817位读者 | 引用前段时间留意到有大牛开源了一个中文的GPT2模型,是最大的15亿参数规模的,看作者给的demo,生成效果还是蛮惊艳的,就想着加载到自己的bert4keras来玩玩。不过早期的bert4keras整体架构写得比较“死”,集成多个不同的模型很不方便。前两周终于看不下去了,把bert4keras的整体结构重写了一遍,现在的bert4keras总能算比较灵活地编写各种Transformer结构的模型了,比如GPT2、T5等都已经集成在里边了。
GPT2科普
GPT,相信很多读者都听说过它了,简单来说,它就是一个基于Transformer结构的语言模型,源自论文《GPT:Improving Language Understanding by Generative Pre-Training》,但它又不是为了做语言模型而生,它是通过语言模型来预训练自身,然后在下游任务微调,提高下游任务的表现。它是“Transformer + 预训练 + 微调”这种模式的先驱者,相对而言,BERT都算是它的“后辈”,而GPT2,则是GPT的升级版——模型更大,训练数据更多——模型最大版的参数量达到了15亿。
基于最小熵原理的NLP库:nlp zero
By 苏剑林 | 2018-05-31 | 101870位读者 | 引用陆陆续续写了几篇最小熵原理的博客,致力于无监督做NLP的一些基础工作。为了方便大家实验,把文章中涉及到的一些算法封装为一个库,供有需要的读者测试使用。
由于面向的是无监督NLP场景,而且基本都是NLP任务的基础工作,因此命名为nlp zero。
地址
Github: https://github.com/bojone/nlp-zero
Pypi: https://pypi.org/project/nlp-zero/
可以直接通过
pip install nlp-zero==0.1.6
进行安装。整个库纯Python实现,没有第三方调用,支持Python2.x和3.x。
厨房,菜市场,其实都是武林
By 苏剑林 | 2018-05-21 | 39573位读者 | 引用“噪声对比估计”杂谈:曲径通幽之妙
By 苏剑林 | 2018-06-13 | 173889位读者 | 引用说到噪声对比估计,或者“负采样”,大家可能立马就想到了Word2Vec。事实上,它的含义远不止于此,噪音对比估计(NCE, Noise Contrastive Estimation)是一个迂回但却异常精美的技巧,它使得我们在没法直接完成归一化因子(也叫配分函数)的计算时,就能够去估算出概率分布的参数。本文就让我们来欣赏一下NCE的曲径通幽般的美妙。
注:由于出发点不同,本文所介绍的“噪声对比估计”实际上更偏向于所谓的“负采样”技巧,但两者本质上是一样的,在此不作区分。
问题起源
问题的根源是难分难舍的指数概率分布~
指数族分布
在很多问题中都会出现指数族分布,即对于某个变量$\boldsymbol{x}$的概率$p(\boldsymbol{x})$,我们将其写成
$$p(\boldsymbol{x}) = \frac{e^{G(\boldsymbol{x})}}{Z}\tag{1}$$
其中$G(\boldsymbol{x})$是$\boldsymbol{x}$的某个“能量”函数,而$Z=\sum_{\boldsymbol{x}} e^{G(\boldsymbol{x})}$则是归一化常数,也叫配分函数。这种分布也称为“玻尔兹曼分布”。
最近评论