24 Dec

修改了一下公式的显示方式(移动端)

移动端

移动端

由于Li xiaobo读者再次反映了本站的公式在移动端的支持不佳问题,笔者对网站的公式显示做了一些修改。如果读者是用电脑浏览的话,那应该感觉不到网站的变化,但是如果是手机端浏览的话,那么应该会发现,原来是由MathJax解析的公式,变成了图片形式的公式。

没错,这是一个很折衷的解决办法,判断客户端,如果是移动端,就是用图片公式的显示方法,图片公式在移动端暂时没有发现错误(请大家测试。)这种方式有一些弊端,比如图片形式的公式并不是那么好看,而且,公式中的中文无法显示。

公式调用了http://latex.codecogs.com/gif.latex,在这里表示感谢。欢迎大家测试,反馈问题:http://bbs.spaces.ac.cn/topic/show/9

4 Mar

趣题:如何编程列出一个集合的所有子集

最近在一个编程中,需要实现一个功能,就是给定集合,如何列出它的所有子集。有兴趣的读者不妨自己想想怎么做?

在找资料的时候,发现了一个很奇妙的方法。

点击阅读全文...

20 Mar

[欧拉数学]伯努利级数及相关级数的总结

最近在算路径积分的时候,频繁地遇到了以下两种无穷级数:
$$\sum_n \frac{1}{n^2\pm\omega^2}\quad \text{和} \quad \prod_n \left(1\pm\frac{\omega^2}{n^2}\right)$$
当然,直接用Mathematica可以很干脆地算出结果来,但是我还是想知道为什么,至少大概地知道。

伯努利级数

当$\omega=0$的时候,第一个级数变为著名的伯努利级数
$$\sum_n \frac{1}{n^2}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\dots$$
既然跟伯努利级数有关,那么很自然想到,从伯努利级数的求和入手。

点击阅读全文...

9 Apr

一个非线性差分方程的隐函数解

问题来源

笔者经常学习的数学研发论坛曾有一帖讨论下述非线性差分方程的渐近求解:
$$a_{n+1}=a_n+\frac{1}{a_n^2},\, a_1=1$$
原帖子在这里,从这帖子中我获益良多,学习到了很多新技巧。主要思路是通过将两边立方,然后设$x_n=a_n^3$,变为等价的递推问题:
$$x_{n+1}=x_n+3+\frac{3}{x_n}+\frac{1}{x_n^2},\,x_1=1$$
然后可以通过巧妙的技巧得到渐近展开式:
$$x_n = 3n+\ln n+a+\frac{\frac{1}{3}(\ln n+a)-\frac{5}{18}}{n}+\dots$$
具体过程就不提了,读者可以自行到上述帖子学习。

然而,这种形式的解虽然精妙,但存在一些笔者不是很满意的地方:

1、解是渐近的级数,这就意味着实际上收敛半径为0;
2、是$n^{-k}$形式的解,对于较小的$n$难以计算,这都使得高精度计算变得比较困难;
3、当然,题目本来的目的是渐近计算,但是渐近分析似乎又没有必要展开那么多项;
4、里边带有了一个本来就比较难计算的极限值$a$;
5、求解过程似乎稍欠直观。

当然,上面这些缺点,有些是鸡蛋里挑骨头的。不过,也正是这些缺点,促使我寻找更好的形式的解,最终导致了这篇文章。

点击阅读全文...

29 Mar

【备忘】电脑远程控制手机的解决方案

最近由于数据挖掘上的研究,需要想办法通过电脑远程控制手机(主要是安卓),遂查找了网络上的一些工具,这里记录一下结果,纯粹做备忘。有同样需要的读者可以参考。

之前在阿里云的服务器和树莓派上都做过远程控制的,记得Linux下的远程控制工具叫做VNC,于是我google和百度了vnc server android、vnc server apk等,发现这类工具确实不少,比如最知名的当属droid vnc server。但是同类的几个软件我都测试了,它确实是VNC软件,但是在我的几个安卓4.x上,显示都不正常(花屏),无奈抛弃了。再看一下日期,发现原来这些软件基本到2013年就停止更新了,一般支持到安卓2.3而已,怪不得。

点击阅读全文...

22 Aug

【中文分词系列】 4. 基于双向LSTM的seq2seq字标注

关于字标注法

上一篇文章谈到了分词的字标注法。要注意字标注法是很有潜力的,要不然它也不会在公开测试中取得最优的成绩了。在我看来,字标注法有效有两个主要的原因,第一个原因是它将分词问题变成了一个序列标注问题,而且这个标注是对齐的,也就是输入的字跟输出的标签是一一对应的,这在序列标注中是一个比较成熟的问题;第二个原因是这个标注法实际上已经是一个总结语义规律的过程,以4tag标注为为例,我们知道,“李”字是常用的姓氏,一半作为多字词(人名)的首字,即标记为b;而“想”由于“理想”之类的词语,也有比较高的比例标记为e,这样一来,要是“李想”两字放在一起时,即便原来词表没有“李想”一词,我们也能正确输出be,也就是识别出“李想”为一个词,也正是因为这个原因,即便是常被视为最不精确的HMM模型也能起到不错的效果。

关于标注,还有一个值得讨论的内容,就是标注的数目。常用的是4tag,事实上还有6tag和2tag,而标记分词结果最简单的方法应该是2tag,即标记“切分/不切分”就够了,但效果不好。为什么反而更多数目的tag效果更好呢?因为更多的tag实际上更全面概括了语义规律。比如,用4tag标注,我们能总结出哪些字单字成词、哪些字经常用作开头、哪些字用作末尾,但仅仅用2tag,就只能总结出哪些字经常用作开头,从归纳的角度来看,是不够全面的。但6tag跟4tag比较呢?我觉得不一定更好,6tag的意思是还要总结出哪些字作第二字、第三字,但这个总结角度是不是对的?我觉得,似乎并没有哪些字固定用于第二字或者第三字的,这个规律的总结性比首字和末字的规律弱多了(不过从新词发现的角度来看,6tag更容易发现长词。)。

双向LSTM

点击阅读全文...

19 Oct

【理解黎曼几何】6. 曲率的计数与计算(Python)

曲率的独立分量

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义
$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$
定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到
$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\
&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\
&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\
&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0
\end{aligned} \tag{51} $$

点击阅读全文...

4 Nov

【外微分浅谈】2. 反对称的威力

内积与外积

向量(这里暂时指的是二维或者三维空间中的向量)的强大之处,在于它定义了内积和外积(更多时候称为叉积、向量积等),它们都是两个向量之间的运算,其中,内积被定义为是对称的,而外积则被定义为反对称的,它们都满足分配律。

沿着书本的传统,我们用$\langle,\rangle$表示内积,用$\land$表示外积,对于外积,更多的时候是用$\times$,但为了不至于出现太多的符号,我们统一使用$\land$。我们将向量用基的形式写出来,比如
$$\boldsymbol{A}=\boldsymbol{e}_{\mu}A^{\mu} \tag{1} $$
其中$\boldsymbol{e}_{\mu}$代表着一组基,而$A^{\mu}$则是向量的分量。我们来计算两个向量$\boldsymbol{A},\boldsymbol{B}$的内积和外积,即
$$\begin{aligned}&\langle \boldsymbol{A}, \boldsymbol{B}\rangle=\langle \boldsymbol{e}_{\mu}A^{\mu}, \boldsymbol{e}_{\nu}B^{\nu}\rangle=\langle\boldsymbol{e}_{\mu},\boldsymbol{e}_{\nu}\rangle A^{\mu}A^{\nu}\\
&\boldsymbol{A}\land \boldsymbol{B}=(\boldsymbol{e}_{\mu}A^{\mu})\land (\boldsymbol{e}_{\nu}B^{\nu})=\boldsymbol{e}_{\mu}\land\boldsymbol{e}_{\nu} A^{\mu}B^{\nu}
\end{aligned} \tag{2} $$

点击阅读全文...