齐次多项式不等式的机器证明(差分代换)
By 苏剑林 | 2014-07-06 | 40158位读者 | 引用在高中阶段,笔者也像很多学生一样参加过数学竞赛,而在准备数学竞赛的过程中,也做过一些竞赛题,其中当然少不了不等式题目。当时,面对各种各样的不等式证明题,我总是非常茫然,因为看到答案之后,总感觉证明的构造非常神奇,但是每当我自己独立去做时,却总想不出来。于是后来就萌生了“有没有办法可以通用地证明这些不等式?”的想法。为了实现这个目的,当时就想出了本文的技巧——通过牺牲计算的简便性来换取证明的有效性。后来,我虽然没有走上数学竞赛这条路,但这个方法还是保留了下来,近日,在和数学研发论坛的朋友们讨论不等式问题时,重新拾起了这个技巧。
此前,在本博客的文章《对称多项式不等式的“物理证明”》中,已经谈到了这个技巧,只是限制于当时的知识储备,了解并不深入。而在本文中,则进行拓展了。这个技巧在当时是我自己在证明中独立发现的,而现在在网上查找时发现,前辈们(杨路、姚勇、杨学枝等)早已研究过这个技巧,称之为“差分代换”,并且已经探究过它在机器证明中的作用。该技巧可以很一般化地用于齐次/非其次不等式的证明,限于篇幅,本文只谈齐次多项式不等式,特别地,是对称齐次多项式不等式,并且发现某些可以简化之处。
素数之美2:Bertrand假设的证明
By 苏剑林 | 2014-08-09 | 23037位读者 | 引用有了上一篇文章的$\prod\limits_{p\leq n}p < 4^{n-1}$的基础,我们其实已经很接近Bertrand假设的证明了。Bertrand假设的证明基于对二项式系数$C_n^{2n}$的素因子次数的细致考察,而在本篇文章中,我们先得到一个关于素数之积的下限公式,然后由此证明一个比Bertrand假设稍微弱一点的假设。最后,则通过一个简单的技巧,将我们的证明推动至Bertrand假设。
二项式系数的素因子
首先,我们考察$n!$中的素因子$p$的次数,结果是被称为Legendre定理的公式:
$n$中素因子$p$的次数恰好为$\sum\limits_{k\geq 1}\left\lfloor\frac{n}{p^k}\right\rfloor$。
证明很简单,因为$n!=1\times 2\times 3\times 4\times \dots \times n$,每隔$p$就有一个$p$的倍数,每隔$p^2$就有一个$p^2$的倍数,每隔$p^3$就有一个$p^3$的倍数,每增加一次幂,将多贡献一个$p$因子,所以把每个间隔数叠加即可。注意该和虽然写成无穷形式,但是非零项是有限的。
几个有关集合势的“简单”证明
By 苏剑林 | 2014-10-01 | 82839位读者 | 引用我们这学期开设《实变函数》的课程,实变函数的第一章是集合。关于无穷集合的势,有很多异于直觉的结论。这些结论的证明技巧,正是集合论的核心方法。然而,我发现虽然很多结论跟我们的直觉相违背,但是仔细回想,它又没我们想象中那样“离谱”。而我们目前使用的教科书《实变函数论与泛函分析》(曹广福),却没有使用看来简单的证明,反而用一些相对复杂的定理,给人故弄玄虚的感觉。
一、全体实数不能跟全体正整数一一对应
这是集合论中的基本结论之一。证明很简单,如果全体实数可以跟全体正整数一一对应,那么$(0,1)$上的实数就可以跟全体正整数一一对应,把$(0,1)$上的全体实数表示为没有0做循环节的无限小数(比如0.1表示为0.0999...),那么设一种对应为:
$$\begin{aligned}&a_1=0.a_{11} a_{12} a_{13} a_{14}\dots\\
&a_2=0.a_{21} a_{22} a_{23} a_{24}\dots\\
&a_3=0.a_{31} a_{32} a_{33} a_{34}\dots\\
&\dots\dots
\end{aligned}$$
班门弄斧:Python的代码能有多简洁?
By 苏剑林 | 2014-10-07 | 28767位读者 | 引用实数集到无理数集的双射
By 苏剑林 | 2014-09-22 | 36279位读者 | 引用集合论的结果告诉我们,全体实数的集合$\mathbb{R}$跟全体无理数的集合$\mathbb{R} \backslash \mathbb{Q}$是等势的,那么,如何构造出它们俩之间的一个双射出来呢?这是一个颇考读者想象力的问题。当然,如果把答案给出来,又似乎显得没有那么神秘。下面给出笔者构造的一个例子,读者可以从中看到这种映射是怎么构造的。
为了构造这样的双射,一个很自然的想法是,让全体有理数和部分无理数在它们自身内相互映射,剩下的无理数则恒等映射。构造这样的一个双射首先得找出一个函数,它的值只会是无理数。要找到这样的函数并不难,比如我们知道:
1、方程$x^4 + 1 = y^2$没有除$x=0,y=\pm 1$外的有理点,否则将与费马大定理$n=4$时的结果矛盾。
2、无理数的平方根依然是无理数。
根据这些信息,足以构造一个正实数$\mathbb{R}^+$到正无理数$\mathbb{R}^+ \backslash \mathbb{Q}^+$的双射,然后稍微修改一下,就可以得到$\mathbb{R}$到$\mathbb{R} \backslash \mathbb{Q}$的双射。
生成函数法与整数的分拆
By 苏剑林 | 2014-09-16 | 31361位读者 | 引用我们在高中甚至初中,都有可能遇到这样的题目:
设$x,y,z$是非负整数,问$x+y+z=2014$有多少组不同的解?(不同顺序视为不同的解)
难度稍高点,可以改为
设$x,y,z$是非负整数,$0\leq x\leq y\leq z$,问$x+y+z=2014$有多少组不同的解?
这些问题都属于整数的分拆问题(广为流传的哥德巴赫猜想也是一个整数分拆问题)。有很多不同的思路可以求解这两道题,然而,个人认为这些方法中最引人入胜的(可能也是最有力的)首推“生成函数法”。
关于生成函数,本节就不多作介绍了,如果缺乏相关基础的朋友,请先阅读相关资料了解该方法。不少数论的、离散数学的、计算机科学的书籍中,都介绍了生成函数法(也叫母函数法)。本质上讲,母函数法能有诸多应用,是因为$x^a\times x^b=x^{a+b}$这一性质的成立。
集合上的一个等价关系决定了几何的一个划分,反之亦然,这直观上是不难理解的。但是,如果我要问一个有$n$个元素的有限集合,共有多少种不同的划分呢?以前感觉这也是一个很简单的问题,就没去细想,但前天抽象代数老师提到这是一个有相当难度的题目,于是研究了一下,发现里面大有文章。这里把我的研究过程简单分享一下,读者可以从中看到如何“从零到有”的过程。
以下假设有$n$个元素的有限集合为$\{1,2,\dots,n\}$,记它的划分数为$B(n)$。
前期:暴力计算
$n=3$的情况不难列出:
$$\begin{aligned}&\{\{1,2,3\}\},\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\\
&\{\{2,3\},\{1\}\},\{\{1\},\{2\},\{3\}\}\end{aligned}$$
变分自编码器(五):VAE + BN = 更好的VAE
By 苏剑林 | 2020-05-06 | 201287位读者 | 引用本文我们继续之前的变分自编码器系列,分析一下如何防止NLP中的VAE模型出现“KL散度消失(KL Vanishing)”现象。本文受到参考文献是ACL 2020的论文《A Batch Normalized Inference Network Keeps the KL Vanishing Away》的启发,并自行做了进一步的完善。
值得一提的是,本文最后得到的方案还是颇为简洁的——只需往编码输出加入BN(Batch Normalization),然后加个简单的scale——但确实很有效,因此值得正在研究相关问题的读者一试。同时,相关结论也适用于一般的VAE模型(包括CV的),如果按照笔者的看法,它甚至可以作为VAE模型的“标配”。
最后,要提醒读者这算是一篇VAE的进阶论文,所以请读者对VAE有一定了解后再来阅读本文。
VAE简单回顾
这里我们简单回顾一下VAE模型,并且讨论一下VAE在NLP中所遇到的困难。关于VAE的更详细介绍,请读者参考笔者的旧作《变分自编码器(一):原来是这么一回事》、《变分自编码器(二):从贝叶斯观点出发》等。
VAE的训练流程
VAE的训练流程大概可以图示为
最近评论