正项级数敛散性最有力的判别法?
By 苏剑林 | 2013-05-17 | 94837位读者 | 引用在学习正项级数的时候,我们的数学分析教材提供了各种判别法,比如积分判别法、比较判别法,并由此衍生出了根植法、比值法等,在最后提供了一个比较精细的“Raabe判别法”。这些方法的精度(强度)各不相同,一般认为“Raabe判别法”的应用范围最广的。但是在我看来,基于p级数的比较判别法已经可以用于所有题目了,它才是最强的方法。
p级数就是我们熟悉的
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
通过积分判别法可以得到当p>1时该级数收敛,反之发散。虽然我不能证明,但是我觉得以下结论是成立的:
若正项级数$\sum_{n=1}^{\infty} a_n$收敛,则总可以找到一个常数A以及一个大于1的常数p,使每项都有$a_n < \frac{A}{n^p}$。
数学基本技艺(A Mathematical Trivium)
By 苏剑林 | 2013-09-26 | 23851位读者 | 引用这是Arnold给物理系学生出的基础数学题。原文是Arnold于1991年,在Russian Math Surveys 46:1(1991),271-278上发的一篇文章,英文名叫 A mathematical trivium,这篇文章是有个前言的,用两页纸的内容吐槽了1991年的学生数学学得很烂,尤其是物理系的。文后附了100道数学题,号称是物理系学生的数学底线。
这是给物理系出的数学题,所以和一般的数学竞赛题目不同,没太多证明题,主要就是计算和解模型,而且还有不少近似估算的,带有明显的物理风格。虽然作者说这是物理系学生数学的底线,但即使对于数学系的学生来说,这些题目还是有不少难度的。网络也有一些题目的答案,但是都比较零散。在这里与大家分享一下题目。什么时候有时间了,或者刚好碰到类似的研究,我也会把题目做做,与各位分享。希望有兴趣的朋友做了之后也把答案与大家交流呀。
一维弹簧的运动(下)
By 苏剑林 | 2014-03-13 | 26632位读者 | 引用在上一篇文章中,我们得到了一维弹簧运动的方程
$$m\frac{\partial^2 X}{\partial t^2}=k\frac{\partial^2 X}{\partial \xi^2}$$
并且得到了通解
$$X=F(u)+H(v)=F(\xi+\beta t)+H(\xi-\beta t)$$
或者
$$X(\xi,t)=\frac{1}{2}\left[X_0(\xi+\beta t)+X_0(\xi-\beta t)\right]+\frac{1}{2\beta}\int_{\xi-\beta t}^{\xi+\beta t} X_1 (s)ds$$
在文章的末尾,提到过这个解是有些问题的。现在让我们来详细分析它。
在查找量子化有关资料的时候,笔者查找到了一系列名为《漫谈几何量子化》的文章,并进一步查询得知,作者为季候风,原来发表在繁星客栈(顺便提一下,繁星客栈是最早的理论物理论坛之一,现在已经不能发帖了,但是上面很多资料都弥足珍贵),据说这是除正则量子化和路径积分量子化外的第三种量子化方法。网上鲜有几何量子化的资料,更不用说是中文资料了,于是季候风前辈的这一十五篇文章便显得格外有意义了。
然而,虽然不少网站都转载了这系列文章,但是无一例外地,文章中的公式图片已经失效了,后来笔者在百度网盘那找到其中的十四篇pdf格式的(估计是网友在公式图片失效前保存下来的),笔者通过替换公式服务器的方式找回了第十五篇,把第十五篇也补充进去了。(见漫谈几何量子化(原文档).zip)
虽然这样已经面前能够阅读了,但是总感觉美中不足,虽然笔者花了三天时间把文章重新用$\LaTeX$录入了,主要是把公式重新录入了,简单地排版了一下。现放出来与大家分享。
三个相切圆的公切圆:补充
By 苏剑林 | 2014-01-30 | 26669位读者 | 引用[问题解答]运煤车的最大路程(更正)
By 苏剑林 | 2014-05-04 | 40239位读者 | 引用从费马大定理谈起(二):勾股数
By 苏剑林 | 2014-08-15 | 27920位读者 | 引用费马大定理说的是$n > 2$的情况,但是我们可以从$n=2$出发,求解到勾股数组的一般表达式,并且从中得到证明费马大定理的原始思想。
互质解
我们在实整数,也就是$\mathbb{Z}$内求解。为了求解不定方程$x^2+y^2=z^2$,首先我们注意到,这是一道齐次方程,这告诉我们,如果存在某一组解,那么可以通过同除以公约数的方法,得到一组两两互质的解。换句话说,有解必有互质解,这是$x^n+y^n=z^n$的解的通性。那么,我们假设$(x,y,z)=(a,b,c)$ 是方程$x^2+y^2=z^2$的一个互质解。
素数之美2:Bertrand假设的证明
By 苏剑林 | 2014-08-09 | 22757位读者 | 引用有了上一篇文章的$\prod\limits_{p\leq n}p < 4^{n-1}$的基础,我们其实已经很接近Bertrand假设的证明了。Bertrand假设的证明基于对二项式系数$C_n^{2n}$的素因子次数的细致考察,而在本篇文章中,我们先得到一个关于素数之积的下限公式,然后由此证明一个比Bertrand假设稍微弱一点的假设。最后,则通过一个简单的技巧,将我们的证明推动至Bertrand假设。
二项式系数的素因子
首先,我们考察$n!$中的素因子$p$的次数,结果是被称为Legendre定理的公式:
$n$中素因子$p$的次数恰好为$\sum\limits_{k\geq 1}\left\lfloor\frac{n}{p^k}\right\rfloor$。
证明很简单,因为$n!=1\times 2\times 3\times 4\times \dots \times n$,每隔$p$就有一个$p$的倍数,每隔$p^2$就有一个$p^2$的倍数,每隔$p^3$就有一个$p^3$的倍数,每增加一次幂,将多贡献一个$p$因子,所以把每个间隔数叠加即可。注意该和虽然写成无穷形式,但是非零项是有限的。
最近评论