6 Sep

基于双向LSTM和迁移学习的seq2seq核心实体识别

暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下。模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值。

比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别。这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起。如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的思路(如TF-IDF抽取)是行不通的,因为单句中的核心实体可能就只出现一次,这时候统计估计是不可靠的,最好能够从语义的角度来理解。我一开始就是从“核心识别”入手,使用的方法类似QA系统:

1、将句子分词,然后用Word2Vec训练词向量;

2、用卷积神经网络(在这种抽取式问题上,CNN效果往往比RNN要好)卷积一下,得到一个与词向量维度一样的输出;

3、损失函数就是输出向量跟训练样本的核心词向量的cos值。

点击阅读全文...

25 Nov

三顾碎纸复原:基于CNN的碎纸复原

赛题回顾

不得不说,2013年的全国数学建模竞赛中的B题真的算是数学建模竞赛中百年难得一遇的好题:题目简洁明了,含义丰富,做法多样,延伸性强,以至于我一直对它念念不忘。因为这个题目,我已经在科学空间写了两篇文章了,分别是《一个人的数学建模:碎纸复原》《迟到一年的建模:再探碎纸复原》。以前做这道题的时候,还只有一点数学建模的知识,而自从学习了数据挖掘、尤其是深度学习之后,我一直想重做这道题,但一直偷懒。这几天终于把它实现了。

如果对题目还不清楚的读者,可以参考前面两篇文章。碎纸复原共有五个附件,分别代表了五种“碎纸片”,即五种不同粒度的碎片。其中附件1和2都不困难,难度主要集中在附件3、4、5,而3、4、5的实现难度基本是一样的。做这道题最容易想到的思路就是贪心算法,即随便选一张图片,然后找到与它最匹配的图片,然后继续匹配下一张。要想贪心算法有效,最关键是找到一个良好的距离函数,来判断两张碎片是否相邻(水平相邻,这里不考虑垂直相邻)。

点击阅读全文...

1 Dec

基于双向GRU和语言模型的视角情感分析

前段时间参加了一个傻逼的网络比赛——基于视角的领域情感分析,主页在这里。比赛的任务是找出一段话的实体然后判断情感,比如“我喜欢本田,我不喜欢丰田”这句话中,要标出“本田”和“丰田”,并且站在本田的角度,情感是积极的,站在丰田的角度,情感就是消极的。也就是说,等价于将实体识别和情感分析结合起来了。

吐槽

看起来很高端,哪里傻逼了?比赛任务本身还不错,值得研究,然而官方却很傻逼,主要体现为:1、比赛分初赛、复赛、决赛三个阶段,初赛一个多月时间,然后筛选部分进入复赛,复赛就简单换了一点数据,题目、数据的领域都没有变化,复赛也是一个月的时间,这傻逼复赛究竟有什么意义?2、大家可以看看选手们在群里讨论什么:

点击阅读全文...

13 Jan

【中文分词系列】 6. 基于全卷积网络的中文分词

之前已经写过用LSTM来做分词的方案了,今天再来一篇用CNN的,准确来说是FCN,全卷积网络。其实这个模型的主要目的并非研究中文分词,而是练习tensorflow。从两年前就开始用Keras了,可以说对它比较熟了,也渐渐发现了它的一些不足,比如处理变长输入时不方便、加入自定义的约束比较困难等,所以干脆试试原生的tensorflow了,试了之后发现其实也不复杂。嗯,都是python,能有多复杂。本文就是练习一下如何用tensorflow处理不定长输入任务,以中文分词为例,并在最后加入了硬解码将深度学习与词典分词结合了起来

CNN

另外,就是关于FCN的。放到语言任务中看,(一维)卷积其实就是ngram模型,从这个角度来看其实CNN远比RNN来得自然,RNN好像就是为序列任务精心设计的,而CNN则是传统ngram模型的一个延伸。另外不管CNN和RNN都有权值共享,看上去只是为了降低运算量的一个折中选择,但事实上里边大有道理。CNN中的权值共享是平移不变性的必然结果,而不是仅仅是降低运算量的一个选择,试想一下,将一幅图像平移一点点,或者在一个句子前插入一个无意义的空格(导致后面所有字都向后平移了一位),这样应该给出一个相似甚至相同的结果,而这要求卷积必然是权值共享的,即权值不能跟位置有关系。

点击阅读全文...

6 Mar

这个系列慢慢写到第7篇,基本上也把分词的各种模型理清楚了,除了一些细微的调整(比如最后的分类器换成CRF)外,剩下的就看怎么玩了。基本上来说,要速度,就用基于词典的分词,要较好地解决组合歧义何和新词识别,则用复杂模型,比如之前介绍的LSTM、FCN都可以。但问题是,用深度学习训练分词器,需要标注语料,这费时费力,仅有的公开的几个标注语料,又不可能赶得上时效,比如,几乎没有哪几个公开的分词系统能够正确切分出“扫描二维码,关注微信号”来。

本文就是做了这样的一个实验,仅用一个词典,就完成了一个深度学习分词器的训练,居然效果还不错!这种方案可以称得上是半监督的,甚至是无监督的。

点击阅读全文...

23 Feb

SVD分解(三):连Word2Vec都只不过是个SVD?

这篇文章要带来一个“重磅”消息,如标题所示,居然连大名鼎鼎的深度学习词向量工具Word2Vec都只不过是个SVD!

当然,Word2Vec的超级忠实粉丝们,你们也不用太激动,这里只是说模型结构上是等价的,并非完全等价,Word2Vec还是有它的独特之处。只不过,经过我这样解释之后,估计很多问题就可以类似想通了。

词向量=one hot

让我们先来回顾一下去年的一篇文章《词向量与Embedding究竟是怎么回事?》,这篇文章主要说的是:所谓Embedding层,就是一个one hot的全连接层罢了(再次强调,这里说的完全等价,而不是“相当于”),而词向量,就是这个全连接层的参数;至于Word2Vec,就通过大大简化的语言模型来训练Embedding层,从而得到词向量(它的优化技巧有很多,但模型结构就只是这么简单);词向量能够减少过拟合风险,是因为用Word2Vec之类的工具、通过大规模语料来无监督地预训练了这个Embedding层,而跟one hot还是Embedding还是词向量本身没啥关系。

有了这个观点后,马上可以解释我们以前的一个做法为什么可行了。在做情感分类问题时,如果有了词向量,想要得到句向量,最简单的一个方案就是直接对句子中的词语的词向量求和或者求平均,这约能达到85%的准确率。事实上这也是facebook出品的文本分类工具FastText的做法了(FastText还多引入了ngram特征,来缓解词序问题,但总的来说,依旧是把特征向量求平均来得到句向量)。为什么这么一个看上去毫不直观的、简单粗暴的方案也能达到这么不错的准确率?

点击阅读全文...

30 Mar

文本情感分类(四):更好的损失函数

文本情感分类其实就是一个二分类问题,事实上,对于分类模型,都会存在这样一个毛病:优化目标跟考核指标不一致。通常来说,对于分类(包括多分类),我们都会采用交叉熵作为损失函数,它的来源就是最大似然估计(参考《梯度下降和EM算法:系出同源,一脉相承》)。但是,我们最后的评估目标,并非要看交叉熵有多小,而是看模型的准确率。一般来说,交叉熵很小,准确率也会很高,但这个关系并非必然的。

要平均,不一定要拔尖

一个更通俗的例子是:一个数学老师,在努力提高同学们的平均分,但期末考核的指标却是及格率(60分及格)。假如平均分是100分(也就意味着所有同学都考到了100分),那么自然及格率是100%,这是最理想的。但现实不一定这么美好,平均分越高,只要平均分还没有达到100,那么及格率却不一定越高,比如两个人分别考40和90,那么平均分就是65,及格率只有50%;如果两个人的成绩都是60,平均分就是60,及格率却有100%。这也就是说,平均分可以作为一个目标,但这个目标并不直接跟考核目标挂钩。

那么,为了提升最后的考核目标,这个老师应该怎么做呢?很显然,首先看看所有学生中,哪些同学已经及格了,及格的同学先不管他们,而针对不及格的同学进行补课加强,这样一来,原则上来说有很多不及格的同学都能考上60分了,也有可能一些本来及格的同学考不够60分了,但这个过程可以迭代,最终使得大家都在60分以上,当然,最终的平均分不一定很高,但没办法,谁叫考核目标是及格率呢?

点击阅读全文...

4 May

记录一次半监督的情感分析

本文是一次不怎么成功的半监督学习的尝试:在IMDB的数据集上,用随机抽取的1000个标注样本训练一个文本情感分类模型,并且在余下的49000个测试样本中,测试准确率为73.48%。

思路

本文的思路来源于OpenAI的这篇文章:
《OpenAI新研究发现无监督情感神经元:可直接调控生成文本的情感》

文章里边介绍了一种无监督(实际上是半监督)做情感分类的模型的方法,并且实验效果很好。然而文章里边的实验很庞大,对于个人来说几乎不可能重现(在4块Pascal GPU花了1个月时间训练)。不过,文章里边的思想是很简单的,根据里边的思想,我们可以做个“山寨版”的。思路如下:

我们一般用深度学习做情感分类,比较常规的思路就是Embedding层+LSTM层+Dense层(Sigmoid激活),我们常说的词向量,相当于预训练了Embedding层(这一层的参数量最大,最容易过拟合),而OpenAI的思想就是,为啥不连LSTM层一并预训练了呢?预训练的方法也是用语言模型来训练。当然,为了使得预训练的结果不至于丢失情感信息,LSTM的隐藏层节点要大一些。

点击阅读全文...