生成扩散模型漫谈(八):最优扩散方差估计(下)
By 苏剑林 | 2022-08-18 | 41765位读者 | 引用在上一篇文章《生成扩散模型漫谈(七):最优扩散方差估计(上)》中,我们介绍并推导了Analytic-DPM中的扩散模型最优方差估计结果,它是直接给出了已经训练好的生成扩散模型的最优方差的一个解析估计,实验显示该估计结果确实能有效提高扩散模型的生成质量。
这篇文章我们继续介绍Analytic-DPM的升级版,出自同一作者团队的论文《Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models》,在官方Github中被称为“Extended-Analytic-DPM”,下面我们也用这个称呼。
结果回顾
上一篇文章是在DDIM的基础上,推出DDIM的生成过程最优方差应该是
\begin{equation}\sigma_t^2 + \gamma_t^2\bar{\sigma}_t^2\end{equation}
其中$\bar{\sigma}_t^2$是分布$p(\boldsymbol{x}_0|\boldsymbol{x}_t)$的方差,它有如下的估计结果(这里取“方差估计2”的结果):
\begin{equation}\bar{\sigma}_t^2 = \frac{\bar{\beta}_t^2}{\bar{\alpha}_t^2}\left(1 - \frac{1}{d}\mathbb{E}_{\boldsymbol{x}_t\sim p(\boldsymbol{x}_t)}\left[ \Vert\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t)\Vert^2\right]\right)\label{eq:basic}\end{equation}
生成扩散模型漫谈(九):条件控制生成结果
By 苏剑林 | 2022-08-30 | 133770位读者 | 引用前面的几篇文章都是比较偏理论的结果,这篇文章我们来讨论一个比较有实用价值的主题——条件控制生成。
作为生成模型,扩散模型跟VAE、GAN、flow等模型的发展史很相似,都是先出来了无条件生成,然后有条件生成就紧接而来。无条件生成往往是为了探索效果上限,而有条件生成则更多是应用层面的内容,因为它可以实现根据我们的意愿来控制输出结果。从DDPM至今,已经出来了很多条件扩散模型的工作,甚至可以说真正带火了扩散模型的就是条件扩散模型,比如脍炙人口的文生图模型DALL·E 2、Imagen。
在这篇文章中,我们对条件扩散模型的理论基础做个简单的学习和总结。
技术分析
从方法上来看,条件控制生成的方式分两种:事后修改(Classifier-Guidance)和事前训练(Classifier-Free)。
生成扩散模型漫谈(十三):从万有引力到扩散模型
By 苏剑林 | 2022-10-18 | 52354位读者 | 引用对于很多读者来说,生成扩散模型可能是他们遇到的第一个能够将如此多的数学工具用到深度学习上的模型。在这个系列文章中,我们已经展示了扩散模型与数学分析、概率统计、常微分方程、随机微分方程乃至偏微分方程等内容的深刻联系,可以说,即便是做数学物理方程的纯理论研究的同学,大概率也可以在扩散模型中找到自己的用武之地。
在这篇文章中,我们再介绍一个同样与数学物理有深刻联系的扩散模型——由“万有引力定律”启发的ODE式扩散模型,出自论文《Poisson Flow Generative Models》(简称PFGM),它给出了一个构建ODE式扩散模型的全新视角。
万有引力
中学时期我们就学过万有引力定律,大概的描述方式是:
两个质点彼此之间相互吸引的作用力,是与它们的质量乘积成正比,并与它们之间的距离成平方反比。
生成扩散模型漫谈(十):统一扩散模型(理论篇)
By 苏剑林 | 2022-09-14 | 69101位读者 | 引用老读者也许会发现,相比之前的更新频率,这篇文章可谓是“姗姗来迟”,因为这篇文章“想得太多”了。
通过前面九篇文章,我们已经对生成扩散模型做了一个相对全面的介绍。虽然理论内容很多,但我们可以发现,前面介绍的扩散模型处理的都是连续型对象,并且都是基于正态噪声来构建前向过程。而“想得太多”的本文,则希望能够构建一个能突破以上限制的扩散模型统一框架(Unified Diffusion Model,UDM):
1、不限对象类型(可以是连续型$\boldsymbol{x}$,也可以是离散型的$\boldsymbol{x}$);
2、不限前向过程(可以用加噪、模糊、遮掩、删减等各种变换构建前向过程);
3、不限时间类型(可以是离散型的$t$,也可以是连续型的$t$);
4、包含已有结果(可以推出前面的DDPM、DDIM、SDE、ODE等结果)。
这是不是太过“异想天开”了?有没有那么理想的框架?本文就来尝试一下。
生成扩散模型漫谈(十一):统一扩散模型(应用篇)
By 苏剑林 | 2022-09-21 | 42500位读者 | 引用在《生成扩散模型漫谈(十):统一扩散模型(理论篇)》中,笔者自称构建了一个统一的模型框架(Unified Diffusion Model,UDM),它允许更一般的扩散方式和数据类型。那么UDM框架究竟能否实现如期目的呢?本文通过一些具体例子来演示其一般性。
框架回顾
首先,UDM通过选择噪声分布$q(\boldsymbol{\varepsilon})$和变换$\boldsymbol{\mathcal{F}}$来构建前向过程
\begin{equation}\boldsymbol{x}_t = \boldsymbol{\mathcal{F}}_t(\boldsymbol{x}_0,\boldsymbol{\varepsilon}),\quad \boldsymbol{\varepsilon}\sim q(\boldsymbol{\varepsilon})\end{equation}
然后,通过如下的分解来实现反向过程$\boldsymbol{x}_{t-1}\sim p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$的采样
\begin{equation}\hat{\boldsymbol{x}}_0\sim p(\boldsymbol{x}_0|\boldsymbol{x}_t)\quad \& \quad \boldsymbol{x}_{t-1}\sim p(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0=\hat{\boldsymbol{x}}_0)\end{equation}
其中$p(\boldsymbol{x}_0|\boldsymbol{x}_t)$就是用$\boldsymbol{x}_t$预估$\boldsymbol{x}_0$的概率,一般用简单分布$q(\boldsymbol{x}_0|\boldsymbol{x}_t)$来近似建模,训练目标基本上就是$-\log q(\boldsymbol{x}_0|\boldsymbol{x}_t)$或其简单变体。当$\boldsymbol{x}_0$是连续型数据时,$q(\boldsymbol{x}_0|\boldsymbol{x}_t)$一般就取条件正态分布;当$\boldsymbol{x}_0$是离散型数据时,$q(\boldsymbol{x}_0|\boldsymbol{x}_t)$可以选择自回归模型或者非自回归模型。
生成扩散模型漫谈(十二):“硬刚”扩散ODE
By 苏剑林 | 2022-09-28 | 65903位读者 | 引用在《生成扩散模型漫谈(五):一般框架之SDE篇》中,我们从SDE的角度理解了生成扩散模型,然后在《生成扩散模型漫谈(六):一般框架之ODE篇》中,我们知道SDE对应的扩散模型中,实际上隐含了一个ODE模型。无独有偶,在《生成扩散模型漫谈(四):DDIM = 高观点DDPM》中我们也知道原本随机采样的DDPM模型中,也隐含了一个确定性的采样过程DDIM,它的连续极限也是一个ODE。
细想上述过程,可以发现不管是“DDPM→DDIM”还是“SDE→ODE”,都是从随机采样模型过渡到确定性模型,而如果我们一开始的目标就是ODE,那么该过程未免显得有点“迂回”了。在本文中,笔者尝试给出ODE扩散模型的直接推导,并揭示了它与雅可比行列式、热传导方程等内容的联系。
微分方程
像GAN这样的生成模型,它本质上是希望找到一个确定性变换,能将从简单分布(如标准正态分布)采样出来的随机变量,变换为特定数据分布的样本。flow模型也是生成模型之一,它的思路是反过来,先找到一个能将数据分布变换简单分布的可逆变换,再求解相应的逆变换来得到一个生成模型。
生成扩散模型漫谈(十五):构建ODE的一般步骤(中)
By 苏剑林 | 2022-12-22 | 27940位读者 | 引用上周笔者写了《生成扩散模型漫谈(十四):构建ODE的一般步骤(上)》(当时还没有“上”这个后缀),本以为已经窥见了构建ODE扩散模型的一般规律,结果不久后评论区大神 @gaohuazuo 就给出了一个构建格林函数更高效、更直观的方案,让笔者自愧不如。再联想起之前大神之前在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》同样也给出了一个关于扩散ODE的精彩描述(间接启发了上一篇博客的结果),大神的洞察力不得不让人叹服。
经过讨论和思考,笔者发现大神的思路本质上就是一阶偏微分方程的特征线法,通过构造特定的向量场保证初值条件,然后通过求解微分方程保证终值条件,同时保证了初值和终值条件,真的非常巧妙!最后,笔者将自己的收获总结成此文,作为上一篇的后续。
前情回顾
简单回顾一下上一篇文章的结果。假设随机变量$\boldsymbol{x}_0\in\mathbb{R}^d$连续地变换成$\boldsymbol{x}_T$,其变化规律服从ODE
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq-ode}\end{equation}
生成扩散模型漫谈(十四):构建ODE的一般步骤(上)
By 苏剑林 | 2022-12-15 | 53645位读者 | 引用书接上文,在《生成扩散模型漫谈(十三):从万有引力到扩散模型》中,我们介绍了一个由万有引力启发的、几何意义非常清晰的ODE式生成扩散模型。有的读者看了之后就疑问:似乎“万有引力”并不是唯一的选择,其他形式的力是否可以由同样的物理绘景构建扩散模型?另一方面,该模型在物理上确实很直观,但还欠缺从数学上证明最后确实能学习到数据分布。
本文就尝试从数学角度比较精确地回答“什么样的力场适合构建ODE式生成扩散模型”这个问题。
基础结论
要回答这个问题,需要用到在《生成扩散模型漫谈(十二):“硬刚”扩散ODE》中我们推导过的一个关于常微分方程对应的分布变化的结论。
考虑$\boldsymbol{x}_t\in\mathbb{R}^d, t\in[0,T]$的一阶(常)微分方程(组)
\begin{equation}\frac{d\boldsymbol{x}_t}{dt}=\boldsymbol{f}_t(\boldsymbol{x}_t)\label{eq:ode}\end{equation}
最近评论