11 Jun

用PyPy提高Python脚本执行效率

《两百万前素数之和与前两百万素数之和》中,我们用Python求了前两百万的素数和以及两百万前的素数和,并且得到了在Python 3.3中的执行时间如下:

两百万前的素数之和:
142913828922
time: 2.4048174478605646

前两百万的素数之和:
31381137530481
time: 46.75734807838953

于是想办法提高python脚本的执行效率,我觉得在算法方面,优化空间已经比较小了,于是考虑执行器上的优化。在搜索的无意间我看到了一个名词——Psyco!这是python的一个外部模块,导入后可以加快.py脚本的执行。网上也有《用 Psyco 让 Python 运行得像 C一样快》、《利用 psyco 让 Python 程序执行更快》之类的文章,说明Psyco确实是一个可行的选择,于是就跃跃欲试了,后来了解到Psyco在2012年已经停止开发,只支持到Python 2.4版本,目前它由 PyPy所接替。于是我就下载了PyPy

点击阅读全文...

25 Apr

当概率遇上复变:解析概率

每当看到数学的两个看似毫不相关的分支巧妙地联系了起来时,我总会为数学的神奇美丽惊叹不已。在很久以前,当我看到通过生成函数法把数论问题与复变函数方法结合起来,衍生出一门奇妙的“解析数论”时,我就惊叹过生成函数法的漂亮!可惜,一直都没有好好写整理这些内容。今天,当我在看李政道先生的《物理学中的数学方法》时,看到他把复变函数跟随机游动如鬼斧神工般了起来,再次让我拍案叫绝。最后实在压抑不住心中的激动,在此写写概率论和生成函数的事情。

数论与复变函数结合,就生成了一门“解析数论”,按照这个说法,概率与复变函数结合,应该就会有一门“解析概率”,但是我在网上搜索的时候,并没有发现这个名词的存在。经过如此,本文还是试用了这个名词。虽然这个名词没有流行,但事实上,解析概率的方法并不算新,它可以追溯到伟大的数学家拉普拉斯以及他的著作《分析概率论》中。尽管如此,这种巧妙漂亮的方法似乎没有得到大家应该有的充分的认识。

我觉得,即使作为一个简洁的计算工具,生成函数法这个美丽的技巧,也应该尽可能为科学爱好者所知,更不用说数学专业的朋友了。

点击阅读全文...

30 Apr

当概率遇上复变:随机游走基本公式

笔者发现,有很多概率问题,尤其是独立重复实验问题,如果用生成函数的方法来做,会显得特别方便。本文要讲的“随机游走”问题便是其中一例,它又被形象地叫做“醉汉问题”,其本质上是一个二项分布,但是由于取了极限,出现了很多新的性质和应用。我们先考虑如下问题:

考虑实数轴上的一个粒子,在$t=0$时刻它位于原点,每过一秒,它要不向前移动一格(+1),要不就向后移动一格(-1),问$n$秒后它所处位置的概率分布。

点击阅读全文...

4 Jun

当概率遇上复变:随机游走与路径积分

我们在上一篇文章中已经看到,随机游走的概率分布是正态的,而在概率论中可以了解到正态分布(几乎)是最重要的一种分布了。随机游走模型和正态分布的应用都很广,我们或许可以思考一个问题,究竟是随机游走造就了正态分布,还是正态分布造就了随机游走?换句话说,哪个更本质些?个人就自己目前所阅读到的内容来看,随机游走更本质些,随机游走正好对应着普遍存在的随机不确定性(比如每次测量的误差),它的分布正好就是正态分布,所以正态分布才应用得如此广泛——因为随机不确定性无处不在。

下面我们来考虑随机游走的另外一种描述方式,原则上来说,它更广泛,更深刻,其大名曰“路径积分”。

点击阅读全文...

13 Jan

当概率遇上复变:从二项分布到泊松分布

泊松分布,适合于描述单位时间内随机事件发生的次数的概率分布,如某一服务设施在一定时间内受到的服务请求的次数、汽车站台的候客人数等。[维基百科]泊松分布也可以作为小概率的二项分布的近似,其推导过程在一般的概率论教材都会讲到。可是一般教材上给出的证明并不是那么让人赏心悦目,如《概率论与数理统计教程》(第二版,茆诗松等编)的第98页就给出的证明过程。那么,哪个证明过程才更让人点赞呢?我认为是利用母函数的证明。

二项分布的母函数为
$$\begin{equation}(q+px)^n,\quad q=1-p\end{equation}$$

点击阅读全文...

18 Oct

【理解黎曼几何】5. 黎曼曲率

现在我们来关注黎曼曲率。总的来说,黎曼曲率提供了一种方案,让身处空间内部的人也能计算自身所处空间的弯曲程度。俗话说,“不识庐山真面目,只缘身在此山中”,还有“当局者迷,旁观者清”,等等,因此,能够身处空间之中而发现空间中的弯曲与否,是一件很了不起的事情,就好像我们已经超越了我们现有的空间,到了更高维的空间去“居高临下”那样。真可谓“心有多远,路就有多远,世界就有多远”。

如果站在更高维空间的角度看,就容易发现空间的弯曲。比如弯曲空间中有一条测地线,从更高维的空间看,它就是一条曲线,可以计算曲率等,但是在原来的空间看,它就是直的,测地线就是直线概念的一般化,因此不可能通过这种途径发现空间的弯曲性,必须有一些迂回的途径。可能一下子不容易想到,但是各种途径都殊途同归后,就感觉它是显然的了。

怎么更好地导出黎曼曲率来,使得它能够明显地反映出弯曲空间跟平直空间的本质区别呢?为此笔者思考了很长时间,看了不少参考书(《引力与时空》、《场论》、《引力论》等),比较了几种导出黎曼曲率的方式,简要叙述如下。

点击阅读全文...

19 Oct

【理解黎曼几何】6. 曲率的计数与计算(Python)

曲率的独立分量

黎曼曲率张量是一个非常重要的张量,当且仅当它全部分量为0时,空间才是平直的。它也出现在爱因斯坦的场方程中。总而言之,只要涉及到黎曼几何,黎曼曲率张量就必然是核心内容。

已经看到,黎曼曲率张量有4个指标,这也意味着它有$n^4$个分量,$n$是空间的维数。那么在2、3、4维空间中,它就有16、81、256个分量了,可见,要计算它,是一件相当痛苦的事情。幸好,这个张量有很多的对称性质,使得独立分量的数目大大减少,我们来分析这一点。

首先我们来导出黎曼曲率张量的一些对称性质,这部分内容是跟经典教科书是一致的。定义
$$R_{\mu\alpha\beta\gamma}=g_{\mu\nu}R^{\nu}_{\alpha\beta\gamma} \tag{50} $$
定义这个量的原因,要谈及逆变张量和协变张量的区别,我们这里主要关心几何观,因此略过对张量的详细分析。这个量被称为完全协变的黎曼曲率张量,有时候也直接叫做黎曼曲率张量,只要不至于混淆,一般不做区分。通过略微冗长的代数运算(在一般的微分几何、黎曼几何或者广义相对论教材中都有),可以得到
$$\begin{aligned}&R_{\mu\alpha\beta\gamma}=-R_{\mu\alpha\gamma\beta}\\
&R_{\mu\alpha\beta\gamma}=-R_{\alpha\mu\beta\gamma}\\
&R_{\mu\alpha\beta\gamma}=R_{\beta\gamma\mu\alpha}\\
&R_{\mu\alpha\beta\gamma}+R_{\mu\beta\gamma\alpha}+R_{\mu\gamma\alpha\beta}=0
\end{aligned} \tag{51} $$

点击阅读全文...

20 Dec

《从动力学角度看优化算法(一):从SGD到动量加速》一文中,我们提出SGD优化算法跟常微分方程(ODE)的数值解法其实是对应的,由此还可以很自然地分析SGD算法的收敛性质、动量加速的原理等等内容。

在这篇文章中,我们继续沿着这个思路,去理解优化算法中的自适应学习率算法。

RMSprop

首先,我们看一个非常经典的自适应学习率优化算法:RMSprop。RMSprop虽然不是最早提出的自适应学习率的优化算法,但是它却是相当实用的一种,它是诸如Adam这样的更综合的算法的基石,通过它我们可以观察自适应学习率的优化算法是怎么做的。

算法概览

一般的梯度下降是这样的:
$$\begin{equation}\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n} - \gamma \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\end{equation}$$
很明显,这里的$\gamma$是一个超参数,便是学习率,它可能需要在不同阶段做不同的调整。

而RMSprop则是
$$\begin{equation}\begin{aligned}\boldsymbol{g}_{n+1} =& \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_{n})\\
\boldsymbol{G}_{n+1}=&\lambda \boldsymbol{G}_{n} + (1 - \lambda) \boldsymbol{g}_{n+1}\otimes \boldsymbol{g}_{n+1}\\
\boldsymbol{\theta}_{n+1}=&\boldsymbol{\theta}_{n} - \frac{\tilde{\gamma}}{\sqrt{\boldsymbol{G}_{n+1} + \epsilon}}\otimes \boldsymbol{g}_{n+1}
\end{aligned}\end{equation}$$

点击阅读全文...