26 Dec

小论文《欧拉数学在数列级数的妙用》

这是我的数学分析期末小论文,是之前的文章《[欧拉数学]找出严谨的答案》的补充与完善,也是我自己的Latex写作练习。文章举了一些例子来说明通过离散数学连续化为离散命题的证明带来思路。

----------------------

通常我们都认为具体的级数是比较容易分析的,而抽象级数则比较难把握思路。抽象级数题目的种类太多,为了熟练解题通常都需要记忆很多形式,而且这些形式通常都很单一,缺乏可拓展性。而运用“欧拉数学”,可以为我们解决数项级数题提供一个独特的、实用性广的思路。

点击阅读全文...

25 Dec

《新理解矩阵5》:体积=行列式

在文章《新理解矩阵3》:行列式的点滴中,笔者首次谈及到了行列式的几何意义,它代表了n维的“平行多面体”的“体积”。然而,这篇文章写于我初学矩阵之时,有些论述并不严谨,甚至有些错误。最近笔者在写期末论文的时候,研究了超复数的相关内容,而行列式的几何意义在我的超复数研究中具有重要作用,因此把行列式的几何意义重新研究了一翻,修正了部分错误,故发此文,与大家分享。

一个$n$阶矩阵$A$可以看成是$n$个$n$维列向量$\boldsymbol{x}_1,\boldsymbol{x}_2,...,\boldsymbol{x}_n$的集合
$$A=(\boldsymbol{x}_1,\boldsymbol{x}_2,\dots,\boldsymbol{x}_n)$$
从代数的角度来看,这构成了一个矩阵;从几何的角度来看,这$n$个向量可以建立一个平行$n$维体。比如:平行四边形就是“平行二维体”,平行六面体就是“平行三维体”,高阶的只需要相应类比,不需要真正想象出高维空间的立体是什么样。

点击阅读全文...

26 Dec

体积与阿达马不等式

阿达马不等式
设有$n$阶实矩阵$\boldsymbol{A}=(a_{ij})_{n\times n}$,那么它的行列式满足阿达马(Hadamard)不等式
$$\begin{equation}
\left(\det \boldsymbol{A}\right)^2 \leq \prod\limits_{i=1}^{n}\left(a_{1i}^2+a_{2i}^2+\dots+a_{ni}^2\right)
\end{equation}$$

这是阿达马在1893年首先发表的。根据体积就是行列式的说法,上述不等式具有相当明显的几何意义。当$n=2$时,它就是说平行四边形的面积不大于两边长的乘积;当$n=3$时,它就是说平行六面体的体积不大于三条棱长的乘积;高维可以类比。这些结论在几何中几乎都是“显然成立”的东西。因此很难理解为什么这个不等式在1893年才被发现。当然,代数不会接受如此笼统的说法,它需要严格的证明。

点击阅读全文...

26 Dec

高维空间的叉积及其几何意义

向量之间的运算有点积和叉积(Cross Product,向量积、外积),其中点积是比较简单的,而且很容易推广到高维;但是叉积不同,一般来说它只不过是三维空间中的东西。叉积的难以推广在于它的多重含义性,如果将向量及其叉积放到张量里边来看(这属于微分形式的内容),那么三维以上的向量叉积是不存在的;但是如果只是把叉积看成是“由两个向量生成第三个与其正交的向量”的工具的话,那么叉积也是可以高维推广的,而且推广的技巧非常巧妙,与三维空间的叉积也非常相似。

回顾三维空间

为了推广三维空间的叉积,首先回顾三维空间的叉积来源是有益的。叉积起源于四元数乘法,但是从目的性来讲,我们希望构造一个向量$\boldsymbol{w}=(w_1,w_2,w_3)$,使得它与已知的两个不共线的向量$\boldsymbol{u}=(u_1,u_2,u_3),\boldsymbol{v}=(v_1,v_2,v_3)$垂直(正交)。从普适性的角度来讲,我们还希望构造出来的向量没有任何“奇点”,为此,我们只用乘法构造。至于叉积的几何意义,则是后话,毕竟,先达到基本的目的再说。

点击阅读全文...

28 Dec

矩阵描述三维空间旋转

本节简单介绍用矩阵来描述旋转。在二维平面上,复数无疑是描述旋转的最佳工具;然而推广到三维空间中,却要动用到“四元数”了。为了证明四元数的相关结论,我们需要三维旋转的矩阵描述。最一般的旋转运动为:绕某一根轴旋转$\theta$角度。这样我们就需要三个参数来描述它:确定一根轴至少需要两个参数,确定角度需要一个参数。因此,如果要用“数”来描述三维空间的伸缩和旋转的话,“三元数”显然是不够的,完成这一目的至少需要四元数。这也从另外一个角度反映了三元数的不存在性。

矩阵方法
首先我们认识到,如果旋转轴是坐标轴之一,那么旋转矩阵将是最简单的,比如向量$\boldsymbol{x}=(x_0,y_0,z_0)^{T}$绕$z$轴逆时针旋转$\theta$角后的坐标就可以描述为
$$\begin{equation}
\boldsymbol{R}_{\theta}\boldsymbol{x}\end{equation}$$

点击阅读全文...

29 Dec

有质动力:倒立单摆的稳定性

前几天在“宇宙的心弦”浏览网页时,发现他更新了一篇很有趣的文章,叫《倒立单摆的稳定性与Ponderomotive Force》(果然,物理系的能接触到各种各样有趣的现象),里边谈到通过施加一个运动在单摆上面,倒立的单摆也可以是稳定的。这勾起了我的兴趣,遂也计算了一番。

点击阅读全文...

5 Jan

不确定性原理的矩阵形式

作为量子理论的一个重要定理,不确定性原理总是伴随着物理意义出现的,但是从数学的角度来讲,把不确定性原理的数学形式抽象出来,有助于我们发现更多领域的“不确定性原理”。

本文中,我们将谈及不确定性原理的n维矩阵形式。首先需要解释给大家的是,不确定性原理其实是关于“两个厄密算符与一个单位向量之间的一条不等式”。在量子力学中,厄密算符对应着无穷维的厄密矩阵;而所谓厄密矩阵,就是一个矩阵同时取共轭和转置之后,等于它自身。但是本文讨论一个更简单的情况,那就是n维实矩阵,n维实矩阵中的厄密矩阵就是我们所说的实对称矩阵了。

设$\boldsymbol{x}$是一个$n$维单位向量,即$|\boldsymbol{x}|=1$,而$\boldsymbol{A}$和$\boldsymbol{B}$是n阶实对称矩阵。在量子力学中,$\boldsymbol{x}$就是波函数,但是在这里,它只不过是一个单位实向量;并记$\boldsymbol{I}$是$n$阶单位阵。

考虑
$$\bar{A}=\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x},\bar{B}=\boldsymbol{x}^{T}\boldsymbol{B}\boldsymbol{x}$$
从这些记号可以看出,这些量对应着可观测量的期望值。当然,如果不懂量子力学,可以只看上面的矩阵形式。

点击阅读全文...

11 Mar

一维弹簧的运动(上)

我们通常用一个波动方程来描述弦的振动,但是,弦的振动是二维的,也就是说,它的“波”是在垂直方向的位移。让我们来考虑一根一端固定的一维理想弹簧,胡克系数为$k$,它的松弛状态是均匀的,线密度是$\rho$,长度是$l$,质量是$m$。

如何弹?
我们要分析这根弹簧的运动,即给定弹簧的初始状态,看弹簧的密度如何变化,这种情况类似于“横波”。但是,弹簧本身是连续介质,这是我们不熟悉的,但是我们可以将它离散化,将它看成无数个小质点的弹簧链。如下图

离散的弹簧

离散的弹簧

点击阅读全文...